These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

78 related articles for article (PubMed ID: 1268253)

  • 41. Enhancement of transcriptional activity of the Escherichia coli trp promoter by upstream A + T-rich regions.
    Nishi T; Itoh S
    Gene; 1986; 44(1):29-36. PubMed ID: 3533725
    [TBL] [Abstract][Full Text] [Related]  

  • 42. [Regulation of mRNA synthesis with special reference to coupling between transcription and translation (author's transl)].
    Imamoto F; Kano Y; Segawa T; Tani S
    Tanpakushitsu Kakusan Koso; 1974 Jul; 19(7):492-8. PubMed ID: 4610642
    [No Abstract]   [Full Text] [Related]  

  • 43. The attenuator of the tryptophan operon in E.coli: rho-mediated release of RNA polymerase from a transcription termination complex in vitro.
    Fuller RS; Platt T
    Nucleic Acids Res; 1978 Dec; 5(12):4613-23. PubMed ID: 370776
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Control of cI gene expression in bacteriophage lambda imm434, studied in an immunity/trp fusion made in vitro.
    Pastrana R; Brammar WJ
    Mol Gen Genet; 1976 Jul; 146(2):191-8. PubMed ID: 785219
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Promoter for the establishment of repressor synthesis in bacteriophage lambda.
    Schmeissner U; Court D; Shimatake H; Rosenberg M
    Proc Natl Acad Sci U S A; 1980 Jun; 77(6):3191-5. PubMed ID: 6447872
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Effect of a low-molecular-weight DNA binding protein, H1 factor, on the in vitro transcription of the lactose operon in Escherichia coli.
    Crepin M; Cukier-Kahn R; Gros F
    Proc Natl Acad Sci U S A; 1975 Jan; 72(1):333-7. PubMed ID: 164021
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Expression of a streptomycete leaderless mRNA encoding chloramphenicol acetyltransferase in Escherichia coli.
    Wu CJ; Janssen GR
    J Bacteriol; 1997 Nov; 179(21):6824-30. PubMed ID: 9352935
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Transcription termination: nucleotide sequence at 3' end of tryptophan operon in Escherichia coli.
    Wu AM; Platt T
    Proc Natl Acad Sci U S A; 1978 Nov; 75(11):5442-6. PubMed ID: 364481
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Inhibition of transcription of the histidine operon in vitro by the first enzyme of the histidine pathway.
    Blasi F; Bruni CB; Avitabile A; Deeley RG; Goldberger RF; Meyers MM
    Proc Natl Acad Sci U S A; 1973 Sep; 70(9):2692-6. PubMed ID: 4582195
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Transcription termination at the tryptophan operon attenuator is decreased in vitro by an oligomer complementary to a segment of the leader transcript.
    Winkler ME; Mullis K; Barnett J; Stroynowski I; Yanofsky C
    Proc Natl Acad Sci U S A; 1982 Apr; 79(7):2181-5. PubMed ID: 6179092
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Translational control of transcription termination at the attenuator of the Escherichia coli tryptophan operon.
    Zurawski G; Elseviers D; Stauffer GV; Yanofsky C
    Proc Natl Acad Sci U S A; 1978 Dec; 75(12):5988-92. PubMed ID: 366606
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Properties of the translocatable tetracycline-resistance element Tn10 in Escherichia coli and bacteriophage lambda.
    Kleckner N; Barker DF; Ross DG; Botstein D
    Genetics; 1978 Nov; 90(3):427-61. PubMed ID: 365678
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Transduction of Gal+ by coliphage T1. 3. Requirement for transcription and translation in recipient cells.
    Drexler H
    J Virol; 1973 Nov; 12(5):1072-7. PubMed ID: 4587757
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Bearing of some recent results on the mechanisms of polarity and messenger RNA stability.
    Imamoto F; Schlessinger D
    Mol Gen Genet; 1974; 135(1):29-38. PubMed ID: 4444716
    [No Abstract]   [Full Text] [Related]  

  • 55. Inhibition of the formation of superinfecting bacteriophage lambda repressor with chloramphenicol.
    Horiuchi T; Inokuchi H
    J Mol Biol; 1966 Feb; 15(2):674-5. PubMed ID: 5915186
    [No Abstract]   [Full Text] [Related]  

  • 56. [Effect of some biologically active substances on the intensity of the cleansing of bacteriophage T2 particles from the blood channel in mice].
    Freĭdlin IS; Artemenko NK; Dzharak'ian OT
    Zh Mikrobiol Epidemiol Immunobiol; 1974 Sep; (9):115-9. PubMed ID: 4440331
    [No Abstract]   [Full Text] [Related]  

  • 57. Influence of chloramphenicol on the reunion frequency of cytoxan-induced chromosome breaks in HeLa cells.
    Vogel F; Vrba M
    Mutat Res; 1967; 4(6):874-5. PubMed ID: 5591297
    [No Abstract]   [Full Text] [Related]  

  • 58. Lactose operon transcription from wild-type and L8-UV5 lac promoters in Escherichia coli treated with chloramphenicol.
    Hirschel BJ; Shen V; Schlessinger D
    J Bacteriol; 1980 Sep; 143(3):1534-7. PubMed ID: 6157675
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Stabilization of mRNA with polar effects in an Escherichia coli mutant.
    Silengo L; Nikolaev N; Schlessinger D; Imamoto F
    Mol Gen Genet; 1974; 134(1):7-19. PubMed ID: 4617156
    [No Abstract]   [Full Text] [Related]  

  • 60. Limitation of transcription by puromycin or chloramphenicol in DNA-coupled systems from Escherichia coli.
    Cremer K; Imamoto F; Schlessinger D
    Mol Gen Genet; 1974 May; 130(2):183-8. PubMed ID: 4600018
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.