These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 1268261)

  • 1. Directed cleavage of ribopolynucleotides with nucleases restricted by multiple modification of substrate.
    Mazo AM; Avdonina TA; Mashkova TD; Kisselev LL
    Biochim Biophys Acta; 1976 May; 432(3):353-60. PubMed ID: 1268261
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selective modification of cytidine, uridine, guanosine and pseudouridine residues in Escherichia coli leucine transfer ribonucleic acid.
    Chang SE; Ish-Horowicz D
    J Mol Biol; 1974 Apr; 84(3):375-88. PubMed ID: 4618853
    [No Abstract]   [Full Text] [Related]  

  • 3. Selective modification of cytidine and uridine residues in Escherichia coli formylmethionine transfer ribonucleic acid.
    Chang SE
    J Mol Biol; 1973 Apr; 75(3):533-47. PubMed ID: 4579716
    [No Abstract]   [Full Text] [Related]  

  • 4. Use of specific endonuclease cleavage in RNA sequencing-an enzymic method for distinguishing between cytidine and uridine residues.
    Gupta RC; Randerath K
    Nucleic Acids Res; 1977 Oct; 4(10):3441-54. PubMed ID: 928065
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rapid RNA sequencing: nucleases from Staphylococcus aureus and Neurospora crassa discriminate between uridine and cytidine.
    Krupp G; Gross HJ
    Nucleic Acids Res; 1979 Aug; 6(11):3481-90. PubMed ID: 158747
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selective modification of uridine and guanosine residues in tyrosine transfer ribonucleic acid.
    Chang SE; Cashmore AR; Brown DM
    J Mol Biol; 1972 Jul; 68(3):455-64. PubMed ID: 4560850
    [No Abstract]   [Full Text] [Related]  

  • 7. An improved rapid enzymatic method of RNA sequencing using chemical modification.
    Mazo AM; Mashkova TD; Avdonina TA; Ambartsumyan NS; Kisselev LL
    Nucleic Acids Res; 1979 Dec; 7(8):2469-82. PubMed ID: 392472
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel ribonuclease activity of cusativin from Cucumis sativus for mapping nucleoside modifications in RNA.
    Addepalli B; Venus S; Thakur P; Limbach PA
    Anal Bioanal Chem; 2017 Sep; 409(24):5645-5654. PubMed ID: 28730304
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fingerprinting of eukaryotic ribosomal RNA labelled with tritiated nucleosides.
    Shine J; Dalgarno L; Hunt JA
    Anal Biochem; 1974 Jun; 59(2):360-5. PubMed ID: 4838774
    [No Abstract]   [Full Text] [Related]  

  • 10. The secondary structure of oocyte and somatic 5S ribosomal RNAs of the fish Misgurnus fossilis L. from nuclease hydrolyses and chemical modification data.
    Serenkova TI; Mazo AM; Mashkova TD; Toots I; Nigul A; Timofeeva MYa ; Kisselev LL
    Nucleic Acids Res; 1984 Jul; 12(13):5385-404. PubMed ID: 6462908
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cleavage of 23-S RNA in 50-S ribosomes into a 5'-terminal and a 3'-terminal fragment by pancreatic ribonuclease.
    Saha BK
    Biochim Biophys Acta; 1974 Jul; 353(3):292-300. PubMed ID: 4368505
    [No Abstract]   [Full Text] [Related]  

  • 12. Evidence on the conformation of HeLa-cell 5.8S ribosomal ribonucleic acid from the reaction of specific cytidine residues with sodium bisulphite.
    Kelly JM; Goddard JP; Maden EH
    Biochem J; 1978 Aug; 173(2):521-32. PubMed ID: 100103
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wheat embryo ribonucleates. II. 3'-Hydroxyl termini of the satellite, 18S, and 26S ribosomal ribonucleates.
    Azad AA; Lane BG
    Can J Biochem; 1973 Aug; 51(8):1195-202. PubMed ID: 4747778
    [No Abstract]   [Full Text] [Related]  

  • 14. Identification of a cytidine-specific ribonuclease from chicken liver.
    Boguski MS; Hieter PA; Levy CC
    J Biol Chem; 1980 Mar; 255(5):2160-3. PubMed ID: 6986389
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A single amino acid substitution changes ribonuclease 4 from a uridine-specific to a cytidine-specific enzyme.
    Hofsteenge J; Moldow C; Vicentini AM; Zelenko O; Jarai-Kote Z; Neumann U
    Biochemistry; 1998 Jun; 37(26):9250-7. PubMed ID: 9649305
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Trinitrophenylation of nucleic acids and their constituents.
    Azegami M; Iwai K
    J Biochem; 1975 Aug; 78(2):409-20. PubMed ID: 6442
    [TBL] [Abstract][Full Text] [Related]  

  • 17. How much is secondary structure responsible for resistance of double-stranded RNA to pancreatic ribonuclease A?
    Libonati M; Palmieri M
    Biochim Biophys Acta; 1978 Apr; 518(2):277-89. PubMed ID: 26405
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reactivity of some guanosine residues of yeast tRNA1Val, its halves, and their complex.
    Vlasov VV; Knorre DG
    Mol Biol; 1974 Sep; 8(2):184-92. PubMed ID: 4610347
    [No Abstract]   [Full Text] [Related]  

  • 19. Human leukemic cells: characteristics of modified methylated minor bases of low molecular weight ribonucleic acids.
    Wulff UC; Desai LS; Heuer R; Meissner J; Foley GE
    Exp Cell Res; 1975 Jan; 90(1):63-72. PubMed ID: 1054639
    [No Abstract]   [Full Text] [Related]  

  • 20. S1 nuclease as a probe of yeast ribosomal 5 S RNA conformation.
    Nichols JL; Welder L
    Biochim Biophys Acta; 1979 Feb; 561(2):445-51. PubMed ID: 371685
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.