These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

51 related articles for article (PubMed ID: 1268272)

  • 1. [Comparison of jumping and electrodiffusion mechanisms of particle movement in thin membranes. II. Potential clamping. Jumping and continuous uniform mechanism].
    Aĭt'ian SKh; Markin VS; Malev VV
    Biofizika; 1976; 21(2):257-60. PubMed ID: 1268272
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Comparison of jumping and electrodiffusion mechanisms of particle movement in thin membranes. III. Potential clamping in a uniform membrane].
    Aĭt'ian SKh; Markin VS; Malev VV
    Biofizika; 1976; 21(2):261-5. PubMed ID: 1268273
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Comparison of jumping and electrodiffusion mechanisms of particle movement in thin membranes. I. Statement of the problem. Stationary transfer].
    Aĭt'ian SKh; Markin VS; Malev VV
    Biofizika; 1976; 21(2):253-6. PubMed ID: 1268271
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Comparison of discrete models of charge transfer in thin membranes. II. Nonstationary conditions, small polarizing voltages].
    Malev VV; Aĭt'ian SKh; Markin VS; Tatulian SA
    Biofizika; 1976; 21(4):643-7. PubMed ID: 1009146
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrical noise and membrane transport processes.
    Siebenga E
    Arch Int Physiol Biochim; 1974; 82(2):313-4. PubMed ID: 4135865
    [No Abstract]   [Full Text] [Related]  

  • 6. Electrical potentials in biological membrane transport.
    Heinz E
    Mol Biol Biochem Biophys; 1981; 33():1-85. PubMed ID: 7290089
    [No Abstract]   [Full Text] [Related]  

  • 7. Steady-state electrodiffusion. Scaling, exact solution for ions of one charge, and the phase plane.
    Leuchtag HR; Swihart JC
    Biophys J; 1977 Jan; 17(1):27-46. PubMed ID: 831855
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Physical model of electroexcitable membranes. II. Mechanism of excitation].
    Smolin IuN
    Biofizika; 1976; 21(2):248-52. PubMed ID: 1268270
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [resonant events in membranes having ion channels with two conformational states].
    Markevich NI; Sel'kov EE
    Biofizika; 1983; 28(2):260-5. PubMed ID: 6303447
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Association dynamics and lateral transport in biological membranes.
    Koppel DE
    J Supramol Struct Cell Biochem; 1981; 17(1):61-7. PubMed ID: 7321054
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Diffusion of nanoparticles in monolayers is modulated by domain size.
    Rückerl F; Käs JA; Selle C
    Langmuir; 2008 Apr; 24(7):3365-9. PubMed ID: 18288874
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Negative hydrophobic ions as transport-mediators for positive ions: evidence for a carrier mechanism.
    Stark G
    Biochim Biophys Acta; 1980 Jul; 600(1):233-7. PubMed ID: 7397172
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simulation of gravitational field variation on fluid-filled biological membranes.
    Avula XJ
    J Gravit Physiol; 1994 May; 1(1):P108-9. PubMed ID: 11538733
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanistic formalism for membrane transport generated by osmotic and mechanical pressure.
    Kargol M; Kargol A
    Gen Physiol Biophys; 2003 Mar; 22(1):51-68. PubMed ID: 12870701
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Negative conductance and electrodiffusion in excitable membrane systems.
    Agin D
    Membranes; 1972; 1():249-65. PubMed ID: 4585225
    [No Abstract]   [Full Text] [Related]  

  • 16. The double fixed charge membrane. Low frequency dielectric dispersion.
    Coster HG
    Biopolymers; 1973 Feb; 13(2):118-32. PubMed ID: 4711482
    [No Abstract]   [Full Text] [Related]  

  • 17. Transmembrane electrical potential of excitable membranes: a pore analysis influence of surface charges and surface dipoles.
    Gavach C
    J Physiol (Paris); 1981 May; 77(9):1029-33. PubMed ID: 6286954
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A practical method for the analysis of osmotic-and-diffusive energy conversion.
    Kargol M
    Gen Physiol Biophys; 1990 Feb; 9(1):19-28. PubMed ID: 2311911
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lateral diffusion in biological membranes. A normal-mode analysis of diffusion on a spherical surface.
    Koppel DE; Sheetz MP; Schindler M
    Biophys J; 1980 Apr; 30(1):187-92. PubMed ID: 7260266
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single particle tracking of complex diffusion in membranes: simulation and detection of barrier, raft, and interaction phenomena.
    Jin S; Verkman AS
    J Phys Chem B; 2007 Apr; 111(14):3625-32. PubMed ID: 17388520
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.