BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 12682799)

  • 1. A threonine residue (Thr71) at the intracellular end of the M1 helix plays a critical role in the gating of Kir6.2 channels by intracellular ATP and protons.
    Cui N; Wu J; Xu H; Wang R; Rojas A; Piao H; Mao J; Abdulkadir L; Li L; Jiang C
    J Membr Biol; 2003 Mar; 192(2):111-22. PubMed ID: 12682799
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protons activate homomeric Kir6.2 channels by selective suppression of the long and intermediate closures.
    Wu J; Xu H; Yang Z; Wang Y; Mao J; Jiang C
    J Membr Biol; 2002 Nov; 190(2):105-16. PubMed ID: 12474075
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gating of the ATP-sensitive K+ channel by a pore-lining phenylalanine residue.
    Rojas A; Wu J; Wang R; Jiang C
    Biochim Biophys Acta; 2007 Jan; 1768(1):39-51. PubMed ID: 16970907
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kir6.2 channel gating by intracellular protons: subunit stoichiometry for ligand binding and channel gating.
    Wang R; Su J; Zhang X; Shi Y; Cui N; Onyebuchi VA; Jiang C
    J Membr Biol; 2006; 213(3):155-64. PubMed ID: 17468960
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Determinant role of membrane helices in K ATP channel gating.
    Wang R; Rojas A; Wu J; Piao H; Adams CY; Xu H; Shi Y; Wang Y; Jiang C
    J Membr Biol; 2005 Mar; 204(1):1-10. PubMed ID: 16007498
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of conserved glycines in pH gating of Kir1.1 (ROMK).
    Sackin H; Nanazashvili M; Palmer LG; Li H
    Biophys J; 2006 May; 90(10):3582-9. PubMed ID: 16533837
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Allosteric modulation of the mouse Kir6.2 channel by intracellular H+ and ATP.
    Wu J; Cui N; Piao H; Wang Y; Xu H; Mao J; Jiang C
    J Physiol; 2002 Sep; 543(Pt 2):495-504. PubMed ID: 12205184
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional modulation of the ATP-sensitive potassium channel by extracellular signal-regulated kinase-mediated phosphorylation.
    Lin YF; Chai Y
    Neuroscience; 2008 Mar; 152(2):371-80. PubMed ID: 18280666
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanism of inward rectification in Kir channels.
    John SA; Xie LH; Weiss JN
    J Gen Physiol; 2004 May; 123(5):623-5. PubMed ID: 15078914
    [No Abstract]   [Full Text] [Related]  

  • 10. The pore helix is involved in stabilizing the open state of inwardly rectifying K+ channels.
    Alagem N; Yesylevskyy S; Reuveny E
    Biophys J; 2003 Jul; 85(1):300-12. PubMed ID: 12829485
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ligand-dependent linkage of the ATP site to inhibition gate closure in the KATP channel.
    Li L; Geng X; Yonkunas M; Su A; Densmore E; Tang P; Drain P
    J Gen Physiol; 2005 Sep; 126(3):285-99. PubMed ID: 16129775
    [TBL] [Abstract][Full Text] [Related]  

  • 12. K+ activation of kir3.1/kir3.4 and kv1.4 K+ channels is regulated by extracellular charges.
    Claydon TW; Makary SY; Dibb KM; Boyett MR
    Biophys J; 2004 Oct; 87(4):2407-18. PubMed ID: 15454439
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular basis of inward rectification: polyamine interaction sites located by combined channel and ligand mutagenesis.
    Kurata HT; Phillips LR; Rose T; Loussouarn G; Herlitze S; Fritzenschaft H; Enkvetchakul D; Nichols CG; Baukrowitz T
    J Gen Physiol; 2004 Nov; 124(5):541-54. PubMed ID: 15477380
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Critical protein domains and amino acid residues for gating the KIR6.2 channel by intracellular ATP.
    Wu J; Piao H; Rojas A; Wang R; Wang Y; Cui N; Shi Y; Chen F; Jiang C
    J Cell Physiol; 2004 Jan; 198(1):73-81. PubMed ID: 14584046
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Involvement of the N-terminus of Kir6.2 in the inhibition of the KATP channel by ATP.
    Proks P; Gribble FM; Adhikari R; Tucker SJ; Ashcroft FM
    J Physiol; 1999 Jan; 514 ( Pt 1)(Pt 1):19-25. PubMed ID: 9831713
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct activation of cloned K(atp) channels by intracellular acidosis.
    Xu H; Cui N; Yang Z; Wu J; Giwa LR; Abdulkadir L; Sharma P; Jiang C
    J Biol Chem; 2001 Apr; 276(16):12898-902. PubMed ID: 11278532
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular analysis of ATP-sensitive K channel gating and implications for channel inhibition by ATP.
    Trapp S; Proks P; Tucker SJ; Ashcroft FM
    J Gen Physiol; 1998 Sep; 112(3):333-49. PubMed ID: 9725893
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Iptakalim, a vascular ATP-sensitive potassium (KATP) channel opener, closes rat pancreatic beta-cell KATP channels and increases insulin release.
    Misaki N; Mao X; Lin YF; Suga S; Li GH; Liu Q; Chang Y; Wang H; Wakui M; Wu J
    J Pharmacol Exp Ther; 2007 Aug; 322(2):871-8. PubMed ID: 17522344
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ATP sensitivity of ATP-sensitive K+ channels: role of the gamma phosphate group of ATP and the R50 residue of mouse Kir6.2.
    John SA; Weiss JN; Ribalet B
    J Physiol; 2005 Nov; 568(Pt 3):931-40. PubMed ID: 16166157
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The I182 region of k(ir)6.2 is closely associated with ligand binding in K(ATP) channel inhibition by ATP.
    Li L; Wang J; Drain P
    Biophys J; 2000 Aug; 79(2):841-52. PubMed ID: 10920016
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.