BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 1268324)

  • 1. Adsorption of tryptophan metabolites from physiological fluids on XAD-2 and determination by single ion monitoring.
    Segura J; Artigas F; Martinez E; Gelpi E
    Biomed Mass Spectrom; 1976 Apr; 3(2):91-6. PubMed ID: 1268324
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A new mass fragmentographic method for the simultaneous analysis of tryptophan, tryptamine, indole-3-acetic acid, serotonin, and 5-hydroxyindole-3-acetic acid in the same sample of rat brain.
    Artigas F; Gelpí E
    Anal Biochem; 1979 Jan; 92(1):233-42. PubMed ID: 426283
    [No Abstract]   [Full Text] [Related]  

  • 3. Applications of gas chromatography and mass spectrometry in neurochemical studies: determination of indole amine profiles at the picogram level.
    Segura J; Gelpi E
    Acta Vitaminol Enzymol; 1975; 29(1-6):25-31. PubMed ID: 1244102
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sensitive determination of deuterated and non-deuterated tryptophan, tryptamine and serotonin by combined capillary gas chromatography and negative ion chemical ionization mass spectrometry.
    Hayashi T; Shimamura M; Matsuda F; Minatogawa Y; Naruse H; Iida Y
    J Chromatogr; 1986 Dec; 383(2):259-69. PubMed ID: 3558559
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitation of tryptophan metabolites in rat feces by thin-layer chromatography.
    Anderson GM
    J Chromatogr; 1975 Feb; 105(2):323-8. PubMed ID: 1150778
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultrasensitive detection of indoleamines by combination of nanoparticle-based extraction with capillary electrophoresis/laser-induced native fluorescence.
    Li MD; Tseng WL; Cheng TL
    J Chromatogr A; 2009 Sep; 1216(36):6451-8. PubMed ID: 19646710
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative ontogenesis of brain tryptamine, serotonin, and tryptophan.
    Artigas F; Suñol C; Tusell JM; Martínez E; Gelpí E
    J Neurochem; 1985 Jan; 44(1):31-7. PubMed ID: 2578059
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chromatographic separation of tryptophan metabolites.
    Bakri M; Carlson JR
    Anal Biochem; 1970 Mar; 34():46-65. PubMed ID: 5309711
    [No Abstract]   [Full Text] [Related]  

  • 9. Determination of tryptophan and several of its metabolites in physiological samples by reversed-phase liquid chromatography with electrochemical detection.
    Koch DD; Kissinger PT
    J Chromatogr; 1979 Dec; 164(4):444-55. PubMed ID: 541420
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Determination of metabolites of tyrosine and of tryptophan and related compounds by gas-liquid chromatography.
    Albro PW; Fishbein L
    J Chromatogr; 1971 Mar; 55(2):297-302. PubMed ID: 5102184
    [No Abstract]   [Full Text] [Related]  

  • 11. Chromatographic analysis of naturally fluorescing compounds. I. Rapid analysis of nanogram amounts of indoles in physiologic fluids.
    Chilcote DD; Mrochek JE
    Clin Chem; 1972 Aug; 18(8):778-82. PubMed ID: 4537821
    [No Abstract]   [Full Text] [Related]  

  • 12. [Application of spectrofluorometry to the study of metabolism of methoxy-indoles].
    Dreux C; Bousquet B; Girard ML
    C R Acad Hebd Seances Acad Sci D; 1970 Aug; 271(5):541-4. PubMed ID: 4989909
    [No Abstract]   [Full Text] [Related]  

  • 13. Sensitive determination of deuterated and non-deuterated indole-3-acetic acid and 5-hydroxyindole-3-acetic acid by combined capillary gas chromatography-negative-ion chemical ionization mass spectrometry.
    Hayashi T; Naruse H; Matsuda F; Iida Y
    J Chromatogr; 1988 Jul; 428(2):209-19. PubMed ID: 2463990
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis for indole compounds in urine by high-performance liquid chromatography with fluorometric detection.
    Graffeo AP; Karger BL
    Clin Chem; 1976 Feb; 22(2):184-7. PubMed ID: 2390
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Precursors and metabolites of phenylethylamine, m and p-tyramine and tryptamine in human lumbar and cisternal cerebrospinal fluid.
    Young SN; Davis BA; Gauthier S
    J Neurol Neurosurg Psychiatry; 1982 Jul; 45(7):633-9. PubMed ID: 6181210
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simultaneous determination of tryptophan and its 5-hydroxy metabolites in human cerebrospinal fluid by reversed phase liquid chromatography with electrochemical detection.
    Laakso JT; Koskiniemi ML; Wahlroos O; Härkönen M
    Scand J Clin Lab Invest; 1983 Oct; 43(6):463-72. PubMed ID: 6197747
    [TBL] [Abstract][Full Text] [Related]  

  • 17. HPLC of tryptophan and its metabolites: as OPA derivatives and on the basis of their UV and fluorescence spectra, simultaneously.
    Presits P; Molnar-Perl I
    Adv Exp Med Biol; 2003; 527():695-704. PubMed ID: 15206792
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative gas-liquid chromatography of biologically important indoles, and their benzo(b)thiophene and 1-methylindole analogs.
    Bosin TR; Buckpitt AR; Maickel RP
    J Chromatogr; 1974 Jul; 94(0):316-20. PubMed ID: 4844618
    [No Abstract]   [Full Text] [Related]  

  • 19. Indoles and auxins. VI. Separation of naturally occurring indoles into acidic, basic, amphoteric, and neutral fractions by ion-exchange chromatography.
    Raj RK; Hutzinger O
    Anal Biochem; 1970 Jan; 33(1):43-6. PubMed ID: 5413242
    [No Abstract]   [Full Text] [Related]  

  • 20. Determination of tryptamine in brain tissue by capillary gas chromatography mass spectrometry (selected ion monitoring).
    Artigas F; Suñol C; Tusell JM; Martínez E; Gelpí E
    Biomed Mass Spectrom; 1984 Mar; 11(3):142-4. PubMed ID: 6722286
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.