BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 12683359)

  • 1. Frontal and parietal components of a cerebral network mediating voluntary attention to novel events.
    Daffner KR; Scinto LF; Weitzman AM; Faust R; Rentz DM; Budson AE; Holcomb PJ
    J Cogn Neurosci; 2003 Feb; 15(2):294-313. PubMed ID: 12683359
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The central role of the prefrontal cortex in directing attention to novel events.
    Daffner KR; Mesulam MM; Scinto LF; Acar D; Calvo V; Faust R; Chabrerie A; Kennedy B; Holcomb P
    Brain; 2000 May; 123 ( Pt 5)():927-39. PubMed ID: 10775538
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Disruption of attention to novel events after frontal lobe injury in humans.
    Daffner KR; Mesulam MM; Holcomb PJ; Calvo V; Acar D; Chabrerie A; Kikinis R; Jolesz FA; Rentz DM; Scinto LF
    J Neurol Neurosurg Psychiatry; 2000 Jan; 68(1):18-24. PubMed ID: 10601395
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anterior and posterior association cortex contributions to the somatosensory P300.
    Yamaguchi S; Knight RT
    J Neurosci; 1991 Jul; 11(7):2039-54. PubMed ID: 2066773
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pathophysiology underlying diminished attention to novel events in patients with early AD.
    Daffner KR; Rentz DM; Scinto LF; Faust R; Budson AE; Holcomb PJ
    Neurology; 2001 May; 56(10):1377-83. PubMed ID: 11376191
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Theta- and delta-band EEG network dynamics during a novelty oddball task.
    Harper J; Malone SM; Iacono WG
    Psychophysiology; 2017 Nov; 54(11):1590-1605. PubMed ID: 28580687
    [TBL] [Abstract][Full Text] [Related]  

  • 7. To ignore or explore: top-down modulation of novelty processing.
    Chong H; Riis JL; McGinnis SM; Williams DM; Holcomb PJ; Daffner KR
    J Cogn Neurosci; 2008 Jan; 20(1):120-34. PubMed ID: 17919081
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of attention to novel stimuli by frontal lobes: an event-related potential study.
    Daffner KR; Mesulam MM; Scinto LF; Cohen LG; Kennedy BP; West WC; Holcomb PJ
    Neuroreport; 1998 Mar; 9(5):787-91. PubMed ID: 9579666
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional parcellation of attentional control regions of the brain.
    Woldorff MG; Hazlett CJ; Fichtenholtz HM; Weissman DH; Dale AM; Song AW
    J Cogn Neurosci; 2004; 16(1):149-65. PubMed ID: 15006044
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Monitoring for target objects: activation of right frontal and parietal cortices with increasing time on task.
    Coull JT; Frackowiak RS; Frith CD
    Neuropsychologia; 1998 Dec; 36(12):1325-34. PubMed ID: 9863686
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Self-face recognition activates a frontoparietal "mirror" network in the right hemisphere: an event-related fMRI study.
    Uddin LQ; Kaplan JT; Molnar-Szakacs I; Zaidel E; Iacoboni M
    Neuroimage; 2005 Apr; 25(3):926-35. PubMed ID: 15808992
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A fronto-parietal network for rapid visual information processing: a PET study of sustained attention and working memory.
    Coull JT; Frith CD; Frackowiak RS; Grasby PM
    Neuropsychologia; 1996 Nov; 34(11):1085-95. PubMed ID: 8904746
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impaired novelty P3 potentials in multiple system atrophy--correlation with orthostatic hypotension.
    Deguchi K; Takeuchi H; Sasaki I; Tsukaguchi M; Touge T; Nishioka M
    J Neurol Sci; 2001 Sep; 190(1-2):61-7. PubMed ID: 11574108
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Attentional control: temporal relationships within the fronto-parietal network.
    Shomstein S; Kravitz DJ; Behrmann M
    Neuropsychologia; 2012 May; 50(6):1202-10. PubMed ID: 22386880
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Shifting visual attention in space: an electrophysiological analysis using high spatial resolution mapping.
    Hopf JM; Mangun GR
    Clin Neurophysiol; 2000 Jul; 111(7):1241-57. PubMed ID: 10880800
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Task switching and novelty processing activate a common neural network for cognitive control.
    Barcelo F; Escera C; Corral MJ; Periáñez JA
    J Cogn Neurosci; 2006 Oct; 18(10):1734-48. PubMed ID: 17014377
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bottom-Up and Top-Down Factors Differentially Influence Stimulus Representations Across Large-Scale Attentional Networks.
    Long NM; Kuhl BA
    J Neurosci; 2018 Mar; 38(10):2495-2504. PubMed ID: 29437930
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Using Partial Directed Coherence to Study Alpha-Band Effective Brain Networks during a Visuospatial Attention Task.
    Zhao Z; Wang C
    Behav Neurol; 2019; 2019():1410425. PubMed ID: 31565094
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Think differently: a brain orienting response to task novelty.
    Barceló F; Periáñez JA; Knight RT
    Neuroreport; 2002 Oct; 13(15):1887-92. PubMed ID: 12395085
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamic changes in phase-amplitude coupling facilitate spatial attention control in fronto-parietal cortex.
    Szczepanski SM; Crone NE; Kuperman RA; Auguste KI; Parvizi J; Knight RT
    PLoS Biol; 2014 Aug; 12(8):e1001936. PubMed ID: 25157678
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.