These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 12683636)

  • 21. Adsorption of aerosil on erythrocyte surface by flow cytometry measurements.
    Gerashchenko BI; Gerashchenko II; Bogomaz VI; Pantazis CG
    Cytometry; 1994 Jan; 15(1):80-3. PubMed ID: 8162828
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mechanism of thioflavin T binding to amyloid fibrils.
    Khurana R; Coleman C; Ionescu-Zanetti C; Carter SA; Krishna V; Grover RK; Roy R; Singh S
    J Struct Biol; 2005 Sep; 151(3):229-38. PubMed ID: 16125973
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Insulin binding and degradation by human erythrocytes at physiological temperature.
    Gambhir KK; Nerurkar SG; Das PD; Archer JA; Henry WL
    Endocrinology; 1981 Nov; 109(5):1787-9. PubMed ID: 7028468
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Nano-scale imaging and dynamics of amylin-membrane interactions and its implication in type II diabetes mellitus.
    Cho WJ; Jena BP; Jeremic AM
    Methods Cell Biol; 2008; 90():267-86. PubMed ID: 19195555
    [TBL] [Abstract][Full Text] [Related]  

  • 25. On the binding of Thioflavin-T to HET-s amyloid fibrils assembled at pH 2.
    Sabaté R; Lascu I; Saupe SJ
    J Struct Biol; 2008 Jun; 162(3):387-96. PubMed ID: 18406172
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Binding mode of Thioflavin T in insulin amyloid fibrils.
    Groenning M; Norrman M; Flink JM; van de Weert M; Bukrinsky JT; Schluckebier G; Frokjaer S
    J Struct Biol; 2007 Sep; 159(3):483-97. PubMed ID: 17681791
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The component polypeptide chains of bovine insulin nucleate or inhibit aggregation of the parent protein in a conformation-dependent manner.
    Devlin GL; Knowles TP; Squires A; McCammon MG; Gras SL; Nilsson MR; Robinson CV; Dobson CM; MacPhee CE
    J Mol Biol; 2006 Jul; 360(2):497-509. PubMed ID: 16774767
    [TBL] [Abstract][Full Text] [Related]  

  • 28. New insights into the self-assembly of insulin amyloid fibrils: an H-D exchange FT-IR study.
    Dzwolak W; Loksztejn A; Smirnovas V
    Biochemistry; 2006 Jul; 45(26):8143-51. PubMed ID: 16800639
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Amphotericin B binds to amyloid fibrils and delays their formation: a therapeutic mechanism?
    Hartsel SC; Weiland TR
    Biochemistry; 2003 May; 42(20):6228-33. PubMed ID: 12755626
    [TBL] [Abstract][Full Text] [Related]  

  • 30. New aspects of oriented binding of diazo complexes on amyloid fibrils and other fibrillar protein structures.
    Katenkamp D; Stiller D
    Acta Histochem; 1974; 49(2):228-32. PubMed ID: 4138134
    [No Abstract]   [Full Text] [Related]  

  • 31. [Effect of glucagon, insulin and serum of patients in hepatic coma on the phosphorylation of human erythrocyte membranes].
    Rysánek K; Malinovská V; Bílková B
    Vnitr Lek; 1979 Aug; 25(8):729-35. PubMed ID: 228487
    [No Abstract]   [Full Text] [Related]  

  • 32. Structural characterization of the partially folded intermediates of an immunoglobulin light chain leading to amyloid fibrillation and amorphous aggregation.
    Qin Z; Hu D; Zhu M; Fink AL
    Biochemistry; 2007 Mar; 46(11):3521-31. PubMed ID: 17315948
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Distribution of insulin receptors in human erythrocyte membranes. Insulin binding to sealed right-side-out and inside-out human erythrocyte vesicles.
    Im JH; Cuppoletti J; Meezan E; Rackley CE; Kim HD
    Biochim Biophys Acta; 1984 Aug; 775(2):260-4. PubMed ID: 6380590
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Interaction of the molecular chaperone alphaB-crystallin with alpha-synuclein: effects on amyloid fibril formation and chaperone activity.
    Rekas A; Adda CG; Andrew Aquilina J; Barnham KJ; Sunde M; Galatis D; Williamson NA; Masters CL; Anders RF; Robinson CV; Cappai R; Carver JA
    J Mol Biol; 2004 Jul; 340(5):1167-83. PubMed ID: 15236975
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Islet amyloid polypeptide forms rigid lipid-protein amyloid fibrils on supported phospholipid bilayers.
    Domanov YA; Kinnunen PK
    J Mol Biol; 2008 Feb; 376(1):42-54. PubMed ID: 18155730
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cytotoxicity of insulin within its self-assembly and amyloidogenic pathways.
    Grudzielanek S; Velkova A; Shukla A; Smirnovas V; Tatarek-Nossol M; Rehage H; Kapurniotu A; Winter R
    J Mol Biol; 2007 Jul; 370(2):372-84. PubMed ID: 17521669
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Conjugated polyelectrolytes: conformation-sensitive optical probes for detection of amyloid fibril formation.
    Nilsson KP; Herland A; Hammarström P; Inganäs O
    Biochemistry; 2005 Mar; 44(10):3718-24. PubMed ID: 15751948
    [TBL] [Abstract][Full Text] [Related]  

  • 38. In vitro synthesis of "amyloid"fibrils from insulin, calcitonin and parathormone.
    Kedar I; Ravid M; Sohar E
    Isr J Med Sci; 1976 Oct; 12(10):1137-40. PubMed ID: 62581
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Identifying Plasmodium falciparum merozoite surface antigen 3 (MSP3) protein peptides that bind specifically to erythrocytes and inhibit merozoite invasion.
    Rodríguez LE; Curtidor H; Ocampo M; Garcia J; Puentes A; Valbuena J; Vera R; López R; Patarroyo ME
    Protein Sci; 2005 Jul; 14(7):1778-86. PubMed ID: 15987906
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [The role of specific blood serum factors in disrupting insulin binding to erythrocyte cell membrane receptors].
    Korpachev VV; Gurina NM; Ivanova ZhV
    Ukr Biokhim Zh (1978); 1994; 66(4):65-8. PubMed ID: 7879290
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.