BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 12683641)

  • 1. Effectiveness of in situ air sparging for removing NAPL gasoline from a sandy aquifer near Perth, Western Australia.
    Johnston CD; Rayner JL; Briegel D
    J Contam Hydrol; 2002 Nov; 59(1-2):87-111. PubMed ID: 12683641
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Removal of non-aqueous phase liquids (NAPLs) from TPH-saturated sandy aquifer sediments using in situ air sparging combined with soil vapor extraction.
    Lee JH; Woo HJ; Jeong KS
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2018; 53(14):1253-1266. PubMed ID: 30623720
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-sustaining smoldering combustion: a novel remediation process for non-aqueous-phase liquids in porous media.
    Switzer C; Pironi P; Gerhard JI; Rein G; Torero JL
    Environ Sci Technol; 2009 Aug; 43(15):5871-7. PubMed ID: 19731690
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of NAPL entrapment conditions on air sparging remediation efficiency.
    Waduge WA; Soga K; Kawabata J
    J Hazard Mater; 2004 Jul; 110(1-3):173-83. PubMed ID: 15177738
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Performance of air sparging systems: a review of case studies.
    Bass DH; Hastings NA; Brown RA
    J Hazard Mater; 2000 Feb; 72(2-3):101-19. PubMed ID: 10650186
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Field study of pulsed air sparging for remediation of petroleum hydrocarbon contaminated soil and groundwater.
    Yang X; Beckmann D; Fiorenza S; Niedermeier C
    Environ Sci Technol; 2005 Sep; 39(18):7279-86. PubMed ID: 16201659
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of multiphase transport models to field remediation by air sparging and soil vapor extraction.
    Rahbeh ME; Mohtar RH
    J Hazard Mater; 2007 May; 143(1-2):156-70. PubMed ID: 17141413
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A review of centrifugal testing of gasoline contamination and remediation.
    Meegoda JN; Hu L
    Int J Environ Res Public Health; 2011 Aug; 8(8):3496-513. PubMed ID: 21909320
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Remediation of saturated soil contaminated with petroleum products using air sparging with thermal enhancement.
    Mohamed AM; El-menshawy N; Saif AM
    J Environ Manage; 2007 May; 83(3):339-50. PubMed ID: 16844283
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aquifer remediation using surfactant-enhanced gas sparging applied to target the contaminant source.
    Cho MY; Oh MS; Annable MD; Kim H
    J Contam Hydrol; 2022 Jun; 248():104002. PubMed ID: 35395442
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Denatured ethanol release into gasoline residuals, Part 1: source behaviour.
    Freitas JG; Barker JF
    J Contam Hydrol; 2013 May; 148():67-78. PubMed ID: 23375214
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modelling of iron cycling and its impact on the electron balance at a petroleum hydrocarbon contaminated site in Hnevice, Czech Republic.
    Vencelides Z; Sracek O; Prommer H
    J Contam Hydrol; 2007 Jan; 89(3-4):270-94. PubMed ID: 17070964
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A laboratory and pilot study of thermally enhanced soil vapor extraction method for the removal of semi-volatile organic contaminants.
    Park G; Shin HS; Ko SO
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2005; 40(4):881-97. PubMed ID: 15792306
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of nonaqueous phase liquid (NAPL) source zone architecture on mass removal mechanisms in strongly layered heterogeneous porous media during soil vapor extraction.
    Yoon H; Werth CJ; Valocchi AJ; Oostrom M
    J Contam Hydrol; 2008 Aug; 100(1-2):58-71. PubMed ID: 18619707
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surfactant flooding makes a comeback: Results of a full-scale, field implementation to recover mobilized NAPL.
    Sharma P; Kostarelos K; Lenschow S; Christensen A; de Blanc PC
    J Contam Hydrol; 2020 Mar; 230():103602. PubMed ID: 32005455
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phytoremediation of petroleum hydrocarbons in tropical coastal soils. I. Selection of promising woody plants.
    Sun WH; Lo JB; Robert FM; Ray C; Tang CS
    Environ Sci Pollut Res Int; 2004; 11(4):260-6. PubMed ID: 15341316
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Numerical simulation of a natural attenuation experiment with a petroleum hydrocarbon NAPL source.
    Brauner JS; Widdowson MA
    Ground Water; 2001; 39(6):939-52. PubMed ID: 11708460
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of source zone heterogeneity on surfactant-enhanced NAPL dissolution and resulting remediation end-points.
    Saenton S; Illangasekare TH; Soga K; Saba TA
    J Contam Hydrol; 2002 Nov; 59(1-2):27-44. PubMed ID: 12683638
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multimedia fate of petroleum hydrocarbons in the soil: oil matrix of constructed biopiles.
    Coulon F; Whelan MJ; Paton GI; Semple KT; Villa R; Pollard SJ
    Chemosphere; 2010 Dec; 81(11):1454-62. PubMed ID: 20851453
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced removal of VOCs from aquifers during air sparging using thickeners and surfactants: Bench-scale experiments.
    Kim H; Ahn D; Annable MD
    J Contam Hydrol; 2016 Jan; 184():25-34. PubMed ID: 26697745
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.