These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 12683727)

  • 1. Chernobyl 137Cs deposition in Austria: analysis of the spatial correlation of the deposition levels.
    Dubois G; Bossew P
    J Environ Radioact; 2003; 65(1):29-45. PubMed ID: 12683727
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multifractal analysis of the 137Cs fallout pattern in Austria resulting from the Chernobyl accident.
    Pausch G; Bossew P; Hofmann W; Steger F
    Health Phys; 1998 Jun; 74(6):673-6. PubMed ID: 9600299
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Contamination of Austrian soil with caesium-137.
    Bossew P; Ditto M; Falkner T; Henrich E; Kienzl K; Rappelsberger U
    J Environ Radioact; 2001; 55(2):187-94. PubMed ID: 11398378
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Cs-137 air pollution of vegetation in the territory of Bryansk region].
    Makhon'ko KP
    Radiats Biol Radioecol; 1998; 38(1):95-101. PubMed ID: 9606410
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A theoretical description of diffusion and migration of 137Cs in soil.
    Likar A; Omahen G; Lipoglavsek M; Vidmar T
    J Environ Radioact; 2001; 57(3):191-201. PubMed ID: 11720369
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Atmospheric deposition of cosmogenic 7Be and 137Cs from fallout of the Chernobyl accident.
    Papastefanou C; Ioannidou A; Stoulos S; Manolopoulou M
    Sci Total Environ; 1995 Aug; 170(1-2):151-6. PubMed ID: 7569877
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sources of present Chernobyl-derived caesium concentrations in surface air and deposition samples.
    Hötzl H; Rosner G; Winkler R
    Sci Total Environ; 1992 Jun; 119():231-42. PubMed ID: 1631530
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Atmospheric contamination by 137Cs during forest fires in the Chernobyl area].
    Azarov SI
    Radiats Biol Radioecol; 1996; 36(4):506-15. PubMed ID: 8925024
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Radionuclide pollution of the Vitebsk region].
    Kirilov LM; Bobrovskaia GS; Zhavoronok SV; Ivanovskiĭ VV; Krylov IuV; Lisitsa PN; Medvedev MN; Panashchenko VV
    Radiats Biol Radioecol; 1997; 37(6):932-5. PubMed ID: 9467650
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Use of 129I and 137Cs in soils for the estimation of 131I deposition in Belarus as a result of the Chernobyl accident.
    Mironov V; Kudrjashov V; Yiou F; Raisbeck GM
    J Environ Radioact; 2002; 59(3):293-307. PubMed ID: 11954719
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The fate of 137Cs in coniferous forests following the application of wood-ash.
    Högbom L; Nohrstedt HO
    Sci Total Environ; 2001 Dec; 280(1-3):133-41. PubMed ID: 11763261
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modelling the Chernobyl radioactive fallout (I): A fractal approach in northern Italy.
    Salvadori G; Ratti SP; Belli G
    Chemosphere; 1996 Dec; 33(12):2347-57. PubMed ID: 8976052
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A new technique for processing airborne gamma ray spectrometry data for mapping low level contaminations.
    Aage HK; Korsbech U; Bargholz K; Hovgaard J
    Appl Radiat Isot; 1999 Dec; 51(6):651-62. PubMed ID: 10581680
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of radioactive exposure from 137Cs in contaminated areas of Northern Ukraine.
    Handl J; Beltz D; Botsch W; Harb S; Jakob D; Michel R; Romantschuk LD
    Health Phys; 2003 Apr; 84(4):502-17. PubMed ID: 12705449
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Radioactive aerosols formed by fires in regions polluted by products of the Chernobyl accident].
    Budyka AK; Ogorodnikov BI
    Radiats Biol Radioecol; 1995; 35(1):102-12. PubMed ID: 7719424
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modelling the Chernobyl radioactive fallout (II): A multifractal approach in some European countries.
    Salvadori G; Ratti SP; Belli G
    Chemosphere; 1996 Dec; 33(12):2359-71. PubMed ID: 8976053
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Iodine-129 and caesium-137 in Chernobyl contaminated soil and their chemical fractionation.
    Hou XL; Fogh CL; Kucera J; Andersson KG; Dahlgaard H; Nielsen SP
    Sci Total Environ; 2003 Jun; 308(1-3):97-109. PubMed ID: 12738204
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mesoscale modelling of radioactive contamination formation in Ukraine caused by the Chernobyl accident.
    Talerko N
    J Environ Radioact; 2005; 78(3):311-29. PubMed ID: 15511565
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chernobyl-derived radiocesium in heather honey and its dependence on deposition patterns.
    Fisk S; Sanderson DC
    Health Phys; 1999 Oct; 77(4):431-5. PubMed ID: 10492350
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessment of spatial variation of cesium-137 in small catchments.
    van der Perk M; Slávik O; Fulajtár E
    J Environ Qual; 2002; 31(6):1930-9. PubMed ID: 12469843
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.