These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 12683809)

  • 21. Insights from biophysical studies on the role of polyunsaturated fatty acids for function of G-protein coupled membrane receptors.
    Gawrisch K; Soubias O; Mihailescu M
    Prostaglandins Leukot Essent Fatty Acids; 2008; 79(3-5):131-4. PubMed ID: 19004627
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Molecular dynamics simulations of rhodopsin point mutants at the cytoplasmic side of helices 3 and 6.
    Cordomí A; Ramon E; Garriga P; Perez JJ
    J Biomol Struct Dyn; 2008 Jun; 25(6):573-87. PubMed ID: 18399691
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Acyl chain conformations in phospholipid bilayers: a comparative study of docosahexaenoic acid and saturated fatty acids.
    Feller SE
    Chem Phys Lipids; 2008 May; 153(1):76-80. PubMed ID: 18358239
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Structure of bovine rhodopsin in a trigonal crystal form.
    Li J; Edwards PC; Burghammer M; Villa C; Schertler GF
    J Mol Biol; 2004 Nov; 343(5):1409-38. PubMed ID: 15491621
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Simulations of a G protein-coupled receptor homology model predict dynamic features and a ligand binding site.
    Wolf S; Böckmann M; Höweler U; Schlitter J; Gerwert K
    FEBS Lett; 2008 Oct; 582(23-24):3335-42. PubMed ID: 18775703
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Evidence for a mechanism by which omega-3 polyunsaturated lipids may affect membrane protein function.
    Carrillo-Tripp M; Feller SE
    Biochemistry; 2005 Aug; 44(30):10164-9. PubMed ID: 16042393
    [TBL] [Abstract][Full Text] [Related]  

  • 27. X-ray crystallographic studies for ligand-protein interaction changes in rhodopsin.
    Okada T
    Biochem Soc Trans; 2004 Nov; 32(Pt 5):738-41. PubMed ID: 15494002
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cutoff size need not strongly influence molecular dynamics results for solvated polypeptides.
    Beck DA; Armen RS; Daggett V
    Biochemistry; 2005 Jan; 44(2):609-16. PubMed ID: 15641786
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Solvent and protein effects on the structure and dynamics of the rhodopsin chromophore.
    Röhrig UF; Guidoni L; Rothlisberger U
    Chemphyschem; 2005 Sep; 6(9):1836-47. PubMed ID: 16110519
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Nonpolar interactions between trans-membrane helical EGF peptide and phosphatidylcholines, sphingomyelins and cholesterol. Molecular dynamics simulation studies.
    Róg T; Murzyn K; Karttunen M; Pasenkiewicz-Gierula M
    J Pept Sci; 2008 Apr; 14(4):374-82. PubMed ID: 17985365
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Molecular dynamics simulations of retinal in rhodopsin: from the dark-adapted state towards lumirhodopsin.
    Lemaître V; Yeagle P; Watts A
    Biochemistry; 2005 Sep; 44(38):12667-80. PubMed ID: 16171381
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A role for direct interactions in the modulation of rhodopsin by omega-3 polyunsaturated lipids.
    Grossfield A; Feller SE; Pitman MC
    Proc Natl Acad Sci U S A; 2006 Mar; 103(13):4888-93. PubMed ID: 16547139
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Crystal structure of squid rhodopsin.
    Murakami M; Kouyama T
    Nature; 2008 May; 453(7193):363-7. PubMed ID: 18480818
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Discrimination of native loop conformations in membrane proteins: decoy library design and evaluation of effective energy scoring functions.
    Forrest LR; Woolf TB
    Proteins; 2003 Sep; 52(4):492-509. PubMed ID: 12910450
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A dual-scale approach toward structure prediction of retinal proteins.
    Chen CC; Chen CM
    J Struct Biol; 2009 Jan; 165(1):37-46. PubMed ID: 19000929
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Position-resolved free energy of solvation for amino acids in lipid membranes from molecular dynamics simulations.
    Johansson AC; Lindahl E
    Proteins; 2008 Mar; 70(4):1332-44. PubMed ID: 17876818
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Convergence of molecular dynamics simulations of membrane proteins.
    Grossfield A; Feller SE; Pitman MC
    Proteins; 2007 Apr; 67(1):31-40. PubMed ID: 17243153
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Modeling and molecular dynamics simulation of the human gonadotropin-releasing hormone receptor in a lipid bilayer.
    Jardón-Valadez E; Ulloa-Aguirre A; Piñeiro A
    J Phys Chem B; 2008 Aug; 112(34):10704-13. PubMed ID: 18680336
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Tryptophan side chain electrostatic interactions determine edge-to-face vs parallel-displaced tryptophan side chain geometries in the designed beta-hairpin "trpzip2".
    Guvench O; Brooks CL
    J Am Chem Soc; 2005 Apr; 127(13):4668-74. PubMed ID: 15796532
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Application of the fuzzy-oil-drop model to membrane protein simulation.
    Zobnina V; Roterman I
    Proteins; 2009 Nov; 77(2):378-94. PubMed ID: 19455711
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.