These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

73 related articles for article (PubMed ID: 12684066)

  • 1. In vivo nuclear Ca2+-ATPase phosphorylation triggers intermediate size molecular transport to the nucleus.
    Gensburger C; Freyermuth S; Klein C; Malviya AN
    Biochem Biophys Res Commun; 2003 Apr; 303(4):1225-8. PubMed ID: 12684066
    [TBL] [Abstract][Full Text] [Related]  

  • 2. cAMP-dependent protein kinase phosphorylates and activates nuclear Ca2+-ATPase.
    Rogue PJ; Humbert JP; Meyer A; Freyermuth S; Krady MM; Malviya AN
    Proc Natl Acad Sci U S A; 1998 Aug; 95(16):9178-83. PubMed ID: 9689054
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanism of nuclear calcium signaling by inositol 1,4,5-trisphosphate produced in the nucleus, nuclear located protein kinase C and cyclic AMP-dependent protein kinase.
    Klein C; Malviya AN
    Front Biosci; 2008 Jan; 13():1206-26. PubMed ID: 17981624
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Extracellular ATP-induced nuclear Ca2+ transient is mediated by inositol 1,4,5-trisphosphate receptors in mouse pancreatic beta-cells.
    Chen Z; Li Z; Peng G; Chen X; Yin W; Kotlikoff MI; Yuan ZQ; Ji G
    Biochem Biophys Res Commun; 2009 May; 382(2):381-4. PubMed ID: 19285037
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phospholamban remains associated with the Ca2+- and Mg2+-dependent ATPase following phosphorylation by cAMP-dependent protein kinase.
    Negash S; Yao Q; Sun H; Li J; Bigelow DJ; Squier TC
    Biochem J; 2000 Oct; 351(Pt 1):195-205. PubMed ID: 10998362
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Investigation of nuclear Ca2+ regulation in the isolated cardiac nuclei].
    Liu J; Wang PY; He ZY
    Shi Yan Sheng Wu Xue Bao; 2002 Jun; 35(2):127-34. PubMed ID: 15344331
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Calcium transport pathways in the nucleus.
    Gerasimenko OV; Gerasimenko JV; Tepikin AV; Petersen OH
    Pflugers Arch; 1996 May; 432(1):1-6. PubMed ID: 8662261
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [ATPase activity and ATP-dependent accumulation of Ca2+ in skeletal muscle nuclei. Effects of denervation and electric stimulation].
    Kulikova OG; Savost'ianov GA; Beliavtseva LM; Razumovskaia NI
    Biokhimiia; 1982 Jul; 47(7):1216-21. PubMed ID: 6214287
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cyclic AMP stimulates Ca(2+)-ATPase-mediated Ca2+ extrusion from human platelets.
    Johansson JS; Nied LE; Haynes DH
    Biochim Biophys Acta; 1992 Mar; 1105(1):19-28. PubMed ID: 1314670
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of calmodulin-dependent and cyclic-AMP-dependent protein kinase stimulation of cardiac sarcoplasmic reticulum calcium transport.
    Katz S; Richter B; Eibschutz B
    Adv Myocardiol; 1985; 6():233-47. PubMed ID: 3158044
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Correlated expression of the 97 kDa sarcoendoplasmic reticulum Ca(2+)-ATPase and Rap1B in platelets and various cell lines.
    Magnier C; Bredoux R; Kovacs T; Quarck R; Papp B; Corvazier E; de Gunzburg J; Enouf J
    Biochem J; 1994 Jan; 297 ( Pt 2)(Pt 2):343-50. PubMed ID: 8297341
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of SERCA2b in mobilization of nuclear Ca2+ in HeLa cells.
    Xu JW; Morita L; Murota S
    J Med Dent Sci; 2001 Jun; 48(2):51-9. PubMed ID: 12162536
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanism of the stimulation of Ca2+-dependent ATPase of skeletal muscle sarcoplasmic reticulum by protein kinase.
    Kranias EG; Samaha FJ; Schwartz A
    Biochim Biophys Acta; 1983 May; 731(1):79-87. PubMed ID: 6303413
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of moderate hypocapnic ventilation on nuclear Ca2+-ATPase activity, nuclear Ca2+ flux, and Ca2+/calmodulin kinase IV activity in the cerebral cortex of newborn piglets.
    Fritz KI; Zubrow AB; Ashraf QM; Mishra OP; Delivoria-Papadopoulos M
    Neurochem Res; 2004 Apr; 29(4):791-6. PubMed ID: 15098943
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nucleoplasmic calcium regulation in rabbit aortic vascular smooth muscle cells.
    Abrenica B; Pierce GN; Gilchrist JS
    Can J Physiol Pharmacol; 2003 Mar; 81(3):301-10. PubMed ID: 12733828
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of human platelet membrane Ca2+ transport by cAMP- and calmodulin-dependent phosphorylation.
    Adunyah SE; Dean WL
    Biochim Biophys Acta; 1987 Oct; 930(3):401-9. PubMed ID: 2958093
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ca2+ transport in muscle. A study of the Ca2+-transport ATPases in smooth muscle.
    Wuytack F
    Verh K Acad Geneeskd Belg; 1989; 51(3):269-93. PubMed ID: 2531511
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Angiotensin-(3-4) counteracts the Angiotensin II inhibitory action on renal Ca2+-ATPase through a cAMP/PKA pathway.
    Axelband F; Dias J; Miranda F; Ferrão FM; Reis RI; Costa-Neto CM; Lara LS; Vieyra A
    Regul Pept; 2012 Aug; 177(1-3):27-34. PubMed ID: 22561691
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The nucleus of HeLa cell contains tubular structures for Ca2+ signalling.
    Lui PP; Kong SK; Kwok TT; Lee CY
    Biochem Biophys Res Commun; 1998 Jun; 247(1):88-93. PubMed ID: 9636660
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Particulars on the regulation of Ca(2+) in the cell nucleus].
    Matyshevs'ka OP; Borysov SI; Hrebinyk DM
    Ukr Biokhim Zh (1999); 2002; 74(5):5-11. PubMed ID: 12916150
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.