These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 12684175)

  • 1. Effect of cochlear damage on the detection of complex temporal envelopes.
    Füllgrabe C; Meyer B; Lorenzi C
    Hear Res; 2003 Apr; 178(1-2):35-43. PubMed ID: 12684175
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Second-order modulation detection thresholds for pure-tone and narrow-band noise carriers.
    Lorenzi C; Simpson MI; Millman RE; Griffiths TD; Woods WP; Rees A; Green GG
    J Acoust Soc Am; 2001 Nov; 110(5 Pt 1):2470-8. PubMed ID: 11757936
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparing the effects of age on amplitude modulation and frequency modulation detection.
    Wallaert N; Moore BC; Lorenzi C
    J Acoust Soc Am; 2016 Jun; 139(6):3088. PubMed ID: 27369130
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Measurement of first- and second-order modulation detection thresholds in listeners with cochlear hearing loss.
    Tandetnik S; Garnier S; Lorenzi C
    Br J Audiol; 2001 Dec; 35(6):355-64. PubMed ID: 11848177
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detection of frequency modulation by hearing-impaired listeners: effects of carrier frequency, modulation rate, and added amplitude modulation.
    Moore BC; Skrodzka E
    J Acoust Soc Am; 2002 Jan; 111(1 Pt 1):327-35. PubMed ID: 11833538
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Age-related shifts in distortion product otoacoustic emissions peak-ratios and amplitude modulation spectra.
    Lai J; Bartlett EL
    Hear Res; 2015 Sep; 327():186-98. PubMed ID: 26232530
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of a noise modulation masker on the detection of second-order amplitude modulation.
    Millman RE; Green GG; Lorenzi C; Rees A
    Hear Res; 2003 Apr; 178(1-2):1-11. PubMed ID: 12684172
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of amplitude compression on first- and second-order modulation detection thresholds in cochlear implant listeners.
    Lorenzi C; Sibellas J; Füllgrabe C; Gallégo S; Fugain C; Meyer B
    Int J Audiol; 2004 May; 43(5):264-70. PubMed ID: 15357409
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sensorineural hearing loss impairs sensitivity but spares temporal integration for detection of frequency modulation.
    Wallaert N; Varnet L; Moore BCJ; Lorenzi C
    J Acoust Soc Am; 2018 Aug; 144(2):720. PubMed ID: 30180712
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interactions between amplitude modulation and frequency modulation processing: Effects of age and hearing loss.
    Paraouty N; Ewert SD; Wallaert N; Lorenzi C
    J Acoust Soc Am; 2016 Jul; 140(1):121. PubMed ID: 27475138
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessing the Role of Place and Timing Cues in Coding Frequency and Amplitude Modulation as a Function of Age.
    Whiteford KL; Kreft HA; Oxenham AJ
    J Assoc Res Otolaryngol; 2017 Aug; 18(4):619-633. PubMed ID: 28429126
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Frequency selectivity in patients with acoustic neuroma.
    Papsin BC; Abel SM; Nedzelski JM
    Laryngoscope; 1994 Sep; 104(9):1092-8. PubMed ID: 8072355
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the Interplay Between Cochlear Gain Loss and Temporal Envelope Coding Deficits.
    Verhulst S; Piktel P; Jagadeesh A; Mauermann M
    Adv Exp Med Biol; 2016; 894():467-475. PubMed ID: 27080688
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evidence that hidden hearing loss underlies amplitude modulation encoding deficits in individuals with and without tinnitus.
    Paul BT; Bruce IC; Roberts LE
    Hear Res; 2017 Feb; 344():170-182. PubMed ID: 27888040
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Discrimination of time-reversed harmonic complexes by normal-hearing and hearing-impaired listeners.
    Lauer AM; Molis M; Leek MR
    J Assoc Res Otolaryngol; 2009 Dec; 10(4):609-19. PubMed ID: 19705203
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Using individual differences to test the role of temporal and place cues in coding frequency modulation.
    Whiteford KL; Oxenham AJ
    J Acoust Soc Am; 2015 Nov; 138(5):3093-104. PubMed ID: 26627783
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modulation detection by normal and hearing-impaired listeners.
    Lacher-Fougère S; Demany L
    Audiology; 1998; 37(2):109-21. PubMed ID: 9547924
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detection of frequency modulation at low modulation rates: evidence for a mechanism based on phase locking.
    Moore BC; Sek A
    J Acoust Soc Am; 1996 Oct; 100(4 Pt 1):2320-31. PubMed ID: 8865639
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of time and place cues in the detection of frequency modulation by hearing-impaired listeners.
    Ernst SM; Moore BC
    J Acoust Soc Am; 2012 Jun; 131(6):4722-31. PubMed ID: 22712945
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Effect of Cochlear Damage on the Sensitivity to Harmonicity.
    Bonnard D; Dauman R; Semal C; Demany L
    Ear Hear; 2017; 38(1):85-93. PubMed ID: 27992390
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.