These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Defect of synthesis of very long-chain fatty acids confers resistance to growth inhibition by inositol phosphorylceramide synthase repression in yeast Saccharomyces cerevisiae. Tani M; Kuge O J Biochem; 2010 Nov; 148(5):565-71. PubMed ID: 20709688 [TBL] [Abstract][Full Text] [Related]
4. Lcb4p is a key regulator of ceramide synthesis from exogenous long chain sphingoid base in Saccharomyces cerevisiae. Funato K; Lombardi R; Vallee B; Riezman H J Biol Chem; 2003 Feb; 278(9):7325-34. PubMed ID: 12493772 [TBL] [Abstract][Full Text] [Related]
5. Syringomycin E inhibition of Saccharomyces cerevisiae: requirement for biosynthesis of sphingolipids with very-long-chain fatty acids and mannose- and phosphoinositol-containing head groups. Stock SD; Hama H; Radding JA; Young DA; Takemoto JY Antimicrob Agents Chemother; 2000 May; 44(5):1174-80. PubMed ID: 10770748 [TBL] [Abstract][Full Text] [Related]
6. Regulation of ceramide synthase by casein kinase 2-dependent phosphorylation in Saccharomyces cerevisiae. Fresques T; Niles B; Aronova S; Mogri H; Rakhshandehroo T; Powers T J Biol Chem; 2015 Jan; 290(3):1395-403. PubMed ID: 25429105 [TBL] [Abstract][Full Text] [Related]
7. The protein kinase Sch9 is a key regulator of sphingolipid metabolism in Saccharomyces cerevisiae. Swinnen E; Wilms T; Idkowiak-Baldys J; Smets B; De Snijder P; Accardo S; Ghillebert R; Thevissen K; Cammue B; De Vos D; Bielawski J; Hannun YA; Winderickx J Mol Biol Cell; 2014 Jan; 25(1):196-211. PubMed ID: 24196832 [TBL] [Abstract][Full Text] [Related]
8. Lag1p and Lac1p are essential for the Acyl-CoA-dependent ceramide synthase reaction in Saccharomyces cerevisae. Schorling S; Vallée B; Barz WP; Riezman H; Oesterhelt D Mol Biol Cell; 2001 Nov; 12(11):3417-27. PubMed ID: 11694577 [TBL] [Abstract][Full Text] [Related]
9. Tsc13p is required for fatty acid elongation and localizes to a novel structure at the nuclear-vacuolar interface in Saccharomyces cerevisiae. Kohlwein SD; Eder S; Oh CS; Martin CE; Gable K; Bacikova D; Dunn T Mol Cell Biol; 2001 Jan; 21(1):109-25. PubMed ID: 11113186 [TBL] [Abstract][Full Text] [Related]
10. ELO2 and ELO3, homologues of the Saccharomyces cerevisiae ELO1 gene, function in fatty acid elongation and are required for sphingolipid formation. Oh CS; Toke DA; Mandala S; Martin CE J Biol Chem; 1997 Jul; 272(28):17376-84. PubMed ID: 9211877 [TBL] [Abstract][Full Text] [Related]
11. Hydroxylation state of fatty acid and long-chain base moieties of sphingolipid determine the sensitivity to growth inhibition due to AUR1 repression in Saccharomyces cerevisiae. Tani M; Kuge O Biochem Biophys Res Commun; 2012 Jan; 417(2):673-8. PubMed ID: 22166213 [TBL] [Abstract][Full Text] [Related]
12. Synthesis and degradation of long-chain base phosphates affect fumonisin B Yanagawa D; Ishikawa T; Imai H J Plant Res; 2017 May; 130(3):571-585. PubMed ID: 28303405 [TBL] [Abstract][Full Text] [Related]
13. Mutant analysis reveals complex regulation of sphingolipid long chain base phosphates and long chain bases during heat stress in yeast. Ferguson-Yankey SR; Skrzypek MS; Lester RL; Dickson RC Yeast; 2002 May; 19(7):573-86. PubMed ID: 11967828 [TBL] [Abstract][Full Text] [Related]
14. Regulation of the sphingoid long-chain base kinase Lcb4p by ergosterol and heme: studies in phytosphingosine-resistant mutants. Sano T; Kihara A; Kurotsu F; Iwaki S; Igarashi Y J Biol Chem; 2005 Nov; 280(44):36674-82. PubMed ID: 16141212 [TBL] [Abstract][Full Text] [Related]
15. Degradation of long-chain base 1-phosphate (LCBP) in Arabidopsis: functional characterization of LCBP phosphatase involved in the dehydration stress response. Nakagawa N; Kato M; Takahashi Y; Shimazaki K; Tamura K; Tokuji Y; Kihara A; Imai H J Plant Res; 2012 May; 125(3):439-49. PubMed ID: 21910031 [TBL] [Abstract][Full Text] [Related]
16. Lip1p: a novel subunit of acyl-CoA ceramide synthase. Vallée B; Riezman H EMBO J; 2005 Feb; 24(4):730-41. PubMed ID: 15692566 [TBL] [Abstract][Full Text] [Related]
17. Accumulation of long-chain bases in yeast promotes their conversion to a long-chain base vinyl ether. Martínez-Montañés F; Lone MA; Hsu FF; Schneiter R J Lipid Res; 2016 Nov; 57(11):2040-2050. PubMed ID: 27561298 [TBL] [Abstract][Full Text] [Related]
18. C26-CoA-dependent ceramide synthesis of Saccharomyces cerevisiae is operated by Lag1p and Lac1p. Guillas I; Kirchman PA; Chuard R; Pfefferli M; Jiang JC; Jazwinski SM; Conzelmann A EMBO J; 2001 Jun; 20(11):2655-65. PubMed ID: 11387200 [TBL] [Abstract][Full Text] [Related]
19. Upstream of growth and differentiation factor 1 (uog1), a mammalian homolog of the yeast longevity assurance gene 1 (LAG1), regulates N-stearoyl-sphinganine (C18-(dihydro)ceramide) synthesis in a fumonisin B1-independent manner in mammalian cells. Venkataraman K; Riebeling C; Bodennec J; Riezman H; Allegood JC; Sullards MC; Merrill AH; Futerman AH J Biol Chem; 2002 Sep; 277(38):35642-9. PubMed ID: 12105227 [TBL] [Abstract][Full Text] [Related]
20. Human homologues of LAG1 reconstitute Acyl-CoA-dependent ceramide synthesis in yeast. Guillas I; Jiang JC; Vionnet C; Roubaty C; Uldry D; Chuard R; Wang J; Jazwinski SM; Conzelmann A J Biol Chem; 2003 Sep; 278(39):37083-91. PubMed ID: 12869556 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]