BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 12684381)

  • 1. Yeast and Human RNA polymerase II elongation complexes: evidence for functional differences and postinitiation recruitment of factors.
    Pardee TS; Ghazy MA; Ponticelli AS
    Eukaryot Cell; 2003 Apr; 2(2):318-27. PubMed ID: 12684381
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamics of RNA polymerase II and elongation factor Spt4/5 recruitment during activator-dependent transcription.
    Rosen GA; Baek I; Friedman LJ; Joo YJ; Buratowski S; Gelles J
    Proc Natl Acad Sci U S A; 2020 Dec; 117(51):32348-32357. PubMed ID: 33293419
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of the open region of RNA polymerase II transcription complexes in the early phase of elongation.
    Fiedler U; Timmers HT
    Nucleic Acids Res; 2001 Jul; 29(13):2706-14. PubMed ID: 11433015
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Elongator interactions with nascent mRNA revealed by RNA immunoprecipitation.
    Gilbert C; Kristjuhan A; Winkler GS; Svejstrup JQ
    Mol Cell; 2004 May; 14(4):457-64. PubMed ID: 15149595
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biochemical Analysis of Yeast Suppressor of Ty 4/5 (Spt4/5) Reveals the Importance of Nucleic Acid Interactions in the Prevention of RNA Polymerase II Arrest.
    Crickard JB; Fu J; Reese JC
    J Biol Chem; 2016 May; 291(19):9853-70. PubMed ID: 26945063
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ccr4-Not and TFIIS Function Cooperatively To Rescue Arrested RNA Polymerase II.
    Dutta A; Babbarwal V; Fu J; Brunke-Reese D; Libert DM; Willis J; Reese JC
    Mol Cell Biol; 2015 Jun; 35(11):1915-25. PubMed ID: 25776559
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The capping enzyme facilitates promoter escape and assembly of a follow-on preinitiation complex for reinitiation.
    Fujiwara R; Damodaren N; Wilusz JE; Murakami K
    Proc Natl Acad Sci U S A; 2019 Nov; 116(45):22573-22582. PubMed ID: 31591205
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient reconstitution of transcription elongation complexes for single-molecule studies of eukaryotic RNA polymerase II.
    Palangat M; Larson MH; Hu X; Gnatt A; Block SM; Landick R
    Transcription; 2012; 3(3):146-53. PubMed ID: 22771949
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evidence that transcript cleavage is essential for RNA polymerase II transcription and cell viability.
    Sigurdsson S; Dirac-Svejstrup AB; Svejstrup JQ
    Mol Cell; 2010 Apr; 38(2):202-10. PubMed ID: 20417599
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spt6 Association with RNA Polymerase II Directs mRNA Turnover During Transcription.
    Dronamraju R; Hepperla AJ; Shibata Y; Adams AT; Magnuson T; Davis IJ; Strahl BD
    Mol Cell; 2018 Jun; 70(6):1054-1066.e4. PubMed ID: 29932900
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Purified yeast RNA polymerase II reads through intrinsic blocks to elongation in response to the yeast TFIIS analogue, P37.
    Christie KR; Awrey DE; Edwards AM; Kane CM
    J Biol Chem; 1994 Jan; 269(2):936-43. PubMed ID: 8288647
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evidence that the elongation factor TFIIS plays a role in transcription initiation at GAL1 in Saccharomyces cerevisiae.
    Prather DM; Larschan E; Winston F
    Mol Cell Biol; 2005 Apr; 25(7):2650-9. PubMed ID: 15767671
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Paf1 complex has functions independent of actively transcribing RNA polymerase II.
    Mueller CL; Porter SE; Hoffman MG; Jaehning JA
    Mol Cell; 2004 May; 14(4):447-56. PubMed ID: 15149594
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The yeast transcription elongation factor Spt4/5 is a sequence-specific RNA binding protein.
    Blythe AJ; Yazar-Klosinski B; Webster MW; Chen E; Vandevenne M; Bendak K; Mackay JP; Hartzog GA; Vrielink A
    Protein Sci; 2016 Sep; 25(9):1710-21. PubMed ID: 27376968
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vitro characterization of mutant yeast RNA polymerase II with reduced binding for elongation factor TFIIS.
    Wu J; Awrey DE; Edwards AM; Archambault J; Friesen JD
    Proc Natl Acad Sci U S A; 1996 Oct; 93(21):11552-7. PubMed ID: 8876173
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Involvement of S. cerevisiae Rpb4 in subset of pathways related to transcription elongation.
    Deshpande SM; Sadhale PP; Vijayraghavan U
    Gene; 2014 Jul; 545(1):126-31. PubMed ID: 24780862
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An mRNA Capping Enzyme Targets FACT to the Active Gene To Enhance the Engagement of RNA Polymerase II into Transcriptional Elongation.
    Sen R; Kaja A; Ferdoush J; Lahudkar S; Barman P; Bhaumik SR
    Mol Cell Biol; 2017 Jul; 37(13):. PubMed ID: 28396559
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transcriptional elongation control by RNA polymerase II: a new frontier.
    Shilatifard A
    Biochim Biophys Acta; 2004 Mar; 1677(1-3):79-86. PubMed ID: 15020049
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biochemical methods to characterize RNA polymerase II elongation complexes.
    Brooks Crickard J; Reese JC
    Methods; 2019 Apr; 159-160():70-81. PubMed ID: 30684536
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genetic interaction between transcription elongation factor TFIIS and RNA polymerase II.
    Archambault J; Lacroute F; Ruet A; Friesen JD
    Mol Cell Biol; 1992 Sep; 12(9):4142-52. PubMed ID: 1508210
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.