These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
483 related articles for article (PubMed ID: 12684457)
1. Selective expression of a persistent tetrodotoxin-resistant Na+ current and NaV1.9 subunit in myenteric sensory neurons. Rugiero F; Mistry M; Sage D; Black JA; Waxman SG; Crest M; Clerc N; Delmas P; Gola M J Neurosci; 2003 Apr; 23(7):2715-25. PubMed ID: 12684457 [TBL] [Abstract][Full Text] [Related]
2. Differential action potentials and firing patterns in injured and uninjured small dorsal root ganglion neurons after nerve injury. Zhang XF; Zhu CZ; Thimmapaya R; Choi WS; Honore P; Scott VE; Kroeger PE; Sullivan JP; Faltynek CR; Gopalakrishnan M; Shieh CC Brain Res; 2004 May; 1009(1-2):147-58. PubMed ID: 15120592 [TBL] [Abstract][Full Text] [Related]
3. Dissecting the role of sodium currents in visceral sensory neurons in a model of chronic hyperexcitability using Nav1.8 and Nav1.9 null mice. Hillsley K; Lin JH; Stanisz A; Grundy D; Aerssens J; Peeters PJ; Moechars D; Coulie B; Stead RH J Physiol; 2006 Oct; 576(Pt 1):257-67. PubMed ID: 16857712 [TBL] [Abstract][Full Text] [Related]
4. Glial-derived neurotrophic factor upregulates expression of functional SNS and NaN sodium channels and their currents in axotomized dorsal root ganglion neurons. Cummins TR; Black JA; Dib-Hajj SD; Waxman SG J Neurosci; 2000 Dec; 20(23):8754-61. PubMed ID: 11102483 [TBL] [Abstract][Full Text] [Related]
5. NaN, a novel voltage-gated Na channel, is expressed preferentially in peripheral sensory neurons and down-regulated after axotomy. Dib-Hajj SD; Tyrrell L; Black JA; Waxman SG Proc Natl Acad Sci U S A; 1998 Jul; 95(15):8963-8. PubMed ID: 9671787 [TBL] [Abstract][Full Text] [Related]
6. Developmental expression of the TTX-resistant voltage-gated sodium channels Nav1.8 (SNS) and Nav1.9 (SNS2) in primary sensory neurons. Benn SC; Costigan M; Tate S; Fitzgerald M; Woolf CJ J Neurosci; 2001 Aug; 21(16):6077-85. PubMed ID: 11487631 [TBL] [Abstract][Full Text] [Related]
7. alpha-SNS produces the slow TTX-resistant sodium current in large cutaneous afferent DRG neurons. Renganathan M; Cummins TR; Hormuzdiar WN; Waxman SG J Neurophysiol; 2000 Aug; 84(2):710-8. PubMed ID: 10938298 [TBL] [Abstract][Full Text] [Related]
8. Contribution of Na(v)1.8 sodium channels to action potential electrogenesis in DRG neurons. Renganathan M; Cummins TR; Waxman SG J Neurophysiol; 2001 Aug; 86(2):629-40. PubMed ID: 11495938 [TBL] [Abstract][Full Text] [Related]
9. Differential role of GDNF and NGF in the maintenance of two TTX-resistant sodium channels in adult DRG neurons. Fjell J; Cummins TR; Dib-Hajj SD; Fried K; Black JA; Waxman SG Brain Res Mol Brain Res; 1999 Apr; 67(2):267-82. PubMed ID: 10216225 [TBL] [Abstract][Full Text] [Related]
10. Tetrodotoxin-resistant sodium channels Na(v)1.8/SNS and Na(v)1.9/NaN in afferent neurons innervating urinary bladder in control and spinal cord injured rats. Black JA; Cummins TR; Yoshimura N; de Groat WC; Waxman SG Brain Res; 2003 Feb; 963(1-2):132-8. PubMed ID: 12560118 [TBL] [Abstract][Full Text] [Related]
11. The distribution of low-threshold TTX-resistant Na⁺ currents in rat trigeminal ganglion cells. Scroggs RS Neuroscience; 2012 Oct; 222():205-14. PubMed ID: 22800565 [TBL] [Abstract][Full Text] [Related]
12. Expression and distribution of TTX-sensitive sodium channel alpha subunits in the enteric nervous system. Bartoo AC; Sprunger LK; Schneider DA J Comp Neurol; 2005 May; 486(2):117-31. PubMed ID: 15844213 [TBL] [Abstract][Full Text] [Related]
13. Analysis of the variation in use-dependent inactivation of high-threshold tetrodotoxin-resistant sodium currents recorded from rat sensory neurons. Tripathi PK; Trujillo L; Cardenas CA; Cardenas CG; de Armendi AJ; Scroggs RS Neuroscience; 2006 Dec; 143(4):923-38. PubMed ID: 17027172 [TBL] [Abstract][Full Text] [Related]
14. Nav1.3 sodium channels: rapid repriming and slow closed-state inactivation display quantitative differences after expression in a mammalian cell line and in spinal sensory neurons. Cummins TR; Aglieco F; Renganathan M; Herzog RI; Dib-Hajj SD; Waxman SG J Neurosci; 2001 Aug; 21(16):5952-61. PubMed ID: 11487618 [TBL] [Abstract][Full Text] [Related]
15. Functional tetrodotoxin-resistant Na(+) channels are expressed presynaptically in rat dorsal root ganglia neurons. Medvedeva YV; Kim MS; Schnizler K; Usachev YM Neuroscience; 2009 Mar; 159(2):559-69. PubMed ID: 19162133 [TBL] [Abstract][Full Text] [Related]
16. Voltage- and use-dependent inhibition of Na+ channels in rat sensory neurones by 4030W92, a new antihyperalgesic agent. Trezise DJ; John VH; Xie XM Br J Pharmacol; 1998 Jul; 124(5):953-63. PubMed ID: 9692781 [TBL] [Abstract][Full Text] [Related]
17. Glycosylation alters steady-state inactivation of sodium channel Nav1.9/NaN in dorsal root ganglion neurons and is developmentally regulated. Tyrrell L; Renganathan M; Dib-Hajj SD; Waxman SG J Neurosci; 2001 Dec; 21(24):9629-37. PubMed ID: 11739573 [TBL] [Abstract][Full Text] [Related]
18. Expression and kinetic properties of Na(+) currents in rat cardiac dorsal root ganglion neurons. Rola R; Szulczyk B; Szulczyk P; Witkowski G Brain Res; 2002 Aug; 947(1):67-77. PubMed ID: 12144854 [TBL] [Abstract][Full Text] [Related]
19. Electrophysiological characterization of the tetrodotoxin-resistant Na+ channel, Na(v)1.9, in mouse dorsal root ganglion neurons. Maruyama H; Yamamoto M; Matsutomi T; Zheng T; Nakata Y; Wood JN; Ogata N Pflugers Arch; 2004 Oct; 449(1):76-87. PubMed ID: 15290301 [TBL] [Abstract][Full Text] [Related]
20. A novel persistent tetrodotoxin-resistant sodium current in SNS-null and wild-type small primary sensory neurons. Cummins TR; Dib-Hajj SD; Black JA; Akopian AN; Wood JN; Waxman SG J Neurosci; 1999 Dec; 19(24):RC43. PubMed ID: 10594087 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]