These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 12685030)

  • 1. Mechanisms of EDDHA effects on the promotion of floral induction in the long-day plant Lemna minor (L.).
    Krajncic B; Nemec J
    J Plant Physiol; 2003 Feb; 160(2):143-51. PubMed ID: 12685030
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Possible role of jasmonic acid in the regulation of floral induction, evocation and floral differentiation in Lemna minor L.
    Krajncic B; Kristl J; Janzekovic I
    Plant Physiol Biochem; 2006; 44(11-12):752-8. PubMed ID: 17107812
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flowering and Seed Production across the Lemnaceae.
    Fourounjian P; Slovin J; Messing J
    Int J Mol Sci; 2021 Mar; 22(5):. PubMed ID: 33800476
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of heat-treated noradrenaline on flowering in Lemna.
    Miyawaki T; Matsumoto S; Takahashi W; Tanaka O
    Biosci Biotechnol Biochem; 2013; 77(7):1586-8. PubMed ID: 23832342
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The potential of Lemna gibba L. and Lemna minor L. to remove Cu, Pb, Zn, and As in gallery water in a mining area in Keban, Turkey.
    Sasmaz M; Arslan Topal EI; Obek E; Sasmaz A
    J Environ Manage; 2015 Nov; 163():246-53. PubMed ID: 26332457
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcriptional analysis reveals potential genes and regulatory networks involved in salicylic acid-induced flowering in duckweed (Lemna gibba).
    Fu L; Tan D; Sun X; Ding Z; Zhang J
    Plant Physiol Biochem; 2020 Oct; 155():512-522. PubMed ID: 32836197
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Effects of different concentration copper on pigment content and antioxidase system of Spirodela polyrrhiza and Lemna minor].
    Tu J; Wang X; Liu D; Li Z
    Ying Yong Sheng Tai Xue Bao; 2006 Mar; 17(3):502-6. PubMed ID: 16724751
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of graphene oxide on copper stress in Lemna minor L.: evaluating growth, biochemical responses, and nutrient uptake.
    Hu C; Liu L; Li X; Xu Y; Ge Z; Zhao Y
    J Hazard Mater; 2018 Jan; 341():168-176. PubMed ID: 28777962
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Growth and photosynthetic responses of Lemna minor L. exposed to cadmium in combination with zinc or copper.
    Vidaković-Cifrek Ž; Tkalec M; Šikić S; Tolić S; Lepeduš H; Pevalek-Kozlina B
    Arh Hig Rada Toksikol; 2015 Jun; 66(2):141-52. PubMed ID: 26110476
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Induction of flowering in Lemna paucicostata, a short-day plant, by chelating agents and iron.
    Maheshwari SC; Gupta S
    Planta; 1967 Mar; 77(1):95-8. PubMed ID: 24522459
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of circulation on wastewater treatment by Lemna gibba and Lemna minor (floating aquatic macrophytes).
    Demirezen Yilmaz D; Akbulut H
    Int J Phytoremediation; 2011; 13(10):970-84. PubMed ID: 21972565
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Response of antioxidant defences to Zn stress in three duckweed species.
    Uruç Parlak K; Demirezen Yilmaz D
    Ecotoxicol Environ Saf; 2012 Nov; 85():52-8. PubMed ID: 23009815
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficacy of Fe(o,o-EDDHA) and Fe(o,p-EDDHA) isomers in supplying Fe to strategy I plants differs in nutrient solution and calcareous soil.
    Rojas CL; Romera FJ; Alcántara E; Pérez-Vicente R; Sariego C; Garcaí-Alonso JI; Boned J; Marti G
    J Agric Food Chem; 2008 Nov; 56(22):10774-8. PubMed ID: 18975970
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cadmium removal by Lemna minor and Spirodela polyrhiza.
    Chaudhuri D; Majumder A; Misra AK; Bandyopadhyay K
    Int J Phytoremediation; 2014; 16(7-12):1119-32. PubMed ID: 24933906
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetic behavior of Fe(o,o-EDDHA)-humic substance mixtures in several soil components and in calcareous soils.
    Cerdán M; Alcañiz S; Juárez M; Jordá JD; Bermúdez D
    J Agric Food Chem; 2007 Oct; 55(22):9159-69. PubMed ID: 17915959
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SIN3 LIKE genes mediate long-day induction of flowering but inhibit the floral transition in short days through histone deacetylation in Arabidopsis.
    Huang F; Yuan W; Tian S; Zheng Q; He Y
    Plant J; 2019 Oct; 100(1):101-113. PubMed ID: 31168864
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Induction and promotion of flowering by heat-treated catecholamines in Lemna paucicostata.
    Okatani A; Ikegami T; Takahashi W; Tanaka O
    Biosci Biotechnol Biochem; 2010; 74(11):2339-41. PubMed ID: 21071858
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of irradiation time and solution concentration on the photochemical degradation of EDDHA/Fe3+: effect of its photodecomposition products on soybean growth.
    Hernández-Apaolaza L; Lucena JJ
    J Sci Food Agric; 2011 Aug; 91(11):2024-30. PubMed ID: 21495040
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Facile deferration of commercial fertilizers containing iron chelates for their NMR analysis.
    Laghi L; Alcañiz S; Cerdán M; Gomez-Gallego M; Sierra MA; Placucci G; Cremonini MA
    J Agric Food Chem; 2009 Jun; 57(12):5143-7. PubMed ID: 19459680
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative ecotoxicity of single and binary mixtures exposures of cadmium and zinc on growth and biomarkers of Lemna gibba.
    Martinez S; Sáenz ME; Alberdi JL; Di Marzio WD
    Ecotoxicology; 2020 Jul; 29(5):571-583. PubMed ID: 32342293
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.