These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 12685051)

  • 1. The alpha-tocopherol content of leaves of pedunculate oak (Quercus robur L.)--variation over the growing season and along the vertical light gradient in the canopy.
    Hansen U; Schneiderheinze J; Stadelmann S; Rank B
    J Plant Physiol; 2003 Jan; 160(1):91-6. PubMed ID: 12685051
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Seasonal variation of leaf ecophysiological traits within the canopy of Quercus petraea (Matt.) Liebl. trees.
    Szöllösi E; Oláh V; Kanalas P; Kis J; Fenyvesi A; Mészáros I
    Acta Biol Hung; 2010; 61 Suppl():172-88. PubMed ID: 21565775
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regeneration patterns of European oak species (Quercus petraea (Matt.) Liebl., Quercus robur L.) in dependence of environment and neighborhood.
    Annighöfer P; Beckschäfer P; Vor T; Ammer C
    PLoS One; 2015; 10(8):e0134935. PubMed ID: 26266803
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Complex adjustments of photosynthetic potentials and internal diffusion conductance to current and previous light availabilities and leaf age in Mediterranean evergreen species Quercus ilex.
    Niinemets U; Cescatti A; Rodeghiero M; Tosens T
    Plant Cell Environ; 2006 Jun; 29(6):1159-78. PubMed ID: 17080941
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Explaining the variability of the photochemical reflectance index (PRI) at the canopy-scale: Disentangling the effects of phenological and physiological changes.
    Merlier E; Hmimina G; Dufrêne E; Soudani K
    J Photochem Photobiol B; 2015 Oct; 151():161-71. PubMed ID: 26295453
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Foliar antioxidant status of adult Mediterranean oak species (Quercus ilex L. and Q. pubescens Willd.) exposed to permanent CO2-enrichment and to seasonal water stress.
    Marabottini R; Schraml C; Paolacci AR; Sorgona A; Raschi A; Rennenberg H; Badiani M
    Environ Pollut; 2001; 115(3):413-23. PubMed ID: 11789922
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of climate on the phenology, acorn crop and radial increment of pedunculate oak (Quercus robur) in the middle Volga region, Tatarstan, Russia.
    Askeyev OV; Tischin D; Sparks TH; Askeyev IV
    Int J Biometeorol; 2005 Mar; 49(4):262-6. PubMed ID: 15538637
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Climatic origins predict variation in photoprotective leaf pigments in response to drought and low temperatures in live oaks (Quercus series Virentes).
    Ramírez-Valiente JA; Koehler K; Cavender-Bares J
    Tree Physiol; 2015 May; 35(5):521-34. PubMed ID: 25939867
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photosynthetic capacity in relation to nitrogen in the canopy of a Quercus robur, Fraxinus angustifolia and Tilia cordata flood plain forest.
    Kazda M; Salzer J; Reiter I
    Tree Physiol; 2000 Sep; 20(15):1029-37. PubMed ID: 11305457
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of red carotenoids in photoprotection during winter acclimation in Buxus sempervirens leaves.
    Hormaetxe K; Hernández A; Becerril JM; García-Plazaola JI
    Plant Biol (Stuttg); 2004 May; 6(3):325-32. PubMed ID: 15143441
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gross nitrogen retranslocation within a canopy of Quercus serrata saplings.
    Ueda MU
    Tree Physiol; 2012 Jul; 32(7):859-66. PubMed ID: 22643636
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Seasonal changes in photosynthesis and photoprotection in a Quercus ilex subsp. ballota woodland located in its upper altitudinal extreme in the Iberian Peninsula.
    Corcuera L; Morales F; Abadía A; Gil-Pelegrín E
    Tree Physiol; 2005 May; 25(5):599-608. PubMed ID: 15741152
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Leaves of Japanese oak (Quercus mongolica var. crispula) mitigate photoinhibition by adjusting electron transport capacities and thermal energy dissipation along the intra-canopy light gradient.
    Kitao M; Kitaoka S; Komatsu M; Utsugi H; Tobita H; Koike T; Maruyama Y
    Physiol Plant; 2012 Oct; 146(2):192-204. PubMed ID: 22394101
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Variations in sucrose and ABA concentrations are concomitant with heteroblastic leaf shape changes in a rhythmically growing species (Quercus robur).
    Le Hir R; Leduc N; Jeannette E; Viemont JD; Pelleschi-Travier S
    Tree Physiol; 2006 Feb; 26(2):229-38. PubMed ID: 16356920
    [TBL] [Abstract][Full Text] [Related]  

  • 15. One dry summer: a leaf proteome study on the response of oak to drought exposure.
    Sergeant K; Spiess N; Renaut J; Wilhelm E; Hausman JF
    J Proteomics; 2011 Aug; 74(8):1385-95. PubMed ID: 21439417
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Antioxidant and photoprotective responses to elevated CO(2) and heat stress during holm oak regeneration by resprouting, evaluated with NIRS (near-infrared reflectance spectroscopy).
    Pintó-Marijuan M; Joffre R; Casals I; De Agazio M; Zacchini M; García-Plazaola JI; Esteban R; Aranda X; Guàrdia M; Fleck I
    Plant Biol (Stuttg); 2013 Jan; 15 Suppl 1():5-17. PubMed ID: 22243620
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A comparative study of physiological and morphological seedling traits associated with shade tolerance in introduced red oak (Quercus rubra) and native hardwood tree species in southwestern Germany.
    Kuehne C; Nosko P; Horwath T; Bauhus J
    Tree Physiol; 2014 Feb; 34(2):184-93. PubMed ID: 24531297
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Drought and air warming affect the species-specific levels of stress-related foliar metabolites of three oak species on acidic and calcareous soil.
    Hu B; Simon J; Rennenberg H
    Tree Physiol; 2013 May; 33(5):489-504. PubMed ID: 23619385
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hyponastic leaf growth decreases the photoprotective demand, prevents damage to photosystem II and delays leaf senescence in Salvia broussonetii plants.
    Abreu ME; Munné-Bosch S
    Physiol Plant; 2008 Oct; 134(2):369-79. PubMed ID: 18533002
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Relationship of isopentenyl diphosphate (IDP) isomerase activity to isoprene emission of oak leaves.
    Brüggemann N; Schnitzler JP
    Tree Physiol; 2002 Oct; 22(14):1011-8. PubMed ID: 12359528
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.