BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 12685480)

  • 1. Arsenic speciation and distribution in an arsenic hyperaccumulating plant.
    Zhang W; Cai Y; Tu C; Ma LQ
    Sci Total Environ; 2002 Dec; 300(1-3):167-77. PubMed ID: 12685480
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Arsenic accumulation in the hyperaccumulator Chinese brake and its utilization potential for phytoremediation.
    Tu C; Ma LQ; Bondada B
    J Environ Qual; 2002; 31(5):1671-5. PubMed ID: 12371185
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of arsenic concentrations and forms on arsenic uptake by the hyperaccumulator ladder brake.
    Tu C; Ma LQ
    J Environ Qual; 2002; 31(2):641-7. PubMed ID: 11931457
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Arsenic species in an arsenic hyperaccumulating fern, Pityrogramma calomelanos: a potential phytoremediator of arsenic-contaminated soils.
    Francesconi K; Visoottiviseth P; Sridokchan W; Goessler W
    Sci Total Environ; 2002 Feb; 284(1-3):27-35. PubMed ID: 11846172
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phytoextraction: simulating uptake and translocation of arsenic in a soil-plant system.
    Ouyang Y
    Int J Phytoremediation; 2005; 7(1):3-17. PubMed ID: 15943240
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three new arsenic hyperaccumulating ferns.
    Srivastava M; Ma LQ; Santos JA
    Sci Total Environ; 2006 Jul; 364(1-3):24-31. PubMed ID: 16371231
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phytoremediation of an arsenic-contaminated site using Pteris vittata L.: a two-year study.
    Kertulis-Tartar GM; Ma LQ; Tu C; Chirenje T
    Int J Phytoremediation; 2006; 8(4):311-22. PubMed ID: 17305305
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Arsenic speciation, and arsenic and phosphate distribution in arsenic hyperaccumulator Pteris vittata L. and non-hyperaccumulator Pteris ensiformis L.
    Singh N; Ma LQ
    Environ Pollut; 2006 May; 141(2):238-46. PubMed ID: 16257102
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Arsenic uptake by Pteris vittata in a subarctic arsenic-contaminated agricultural field in Japan: An 8-year study.
    Kohda YH; Endo G; Kitajima N; Sugawara K; Chien MF; Inoue C; Miyauchi K
    Sci Total Environ; 2022 Jul; 831():154830. PubMed ID: 35346712
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Arsenic species and leachability in the fronds of the hyperaccumulator Chinese brake (Pteris vittata L.).
    Tu C; Ma LQ; Zhang W; Cai Y; Harris WG
    Environ Pollut; 2003; 124(2):223-30. PubMed ID: 12713922
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Arsenic hyperaccumulation by Pteris vittata from arsenic contaminated soils and the effect of liming and phosphate fertilisation.
    Caille N; Swanwick S; Zhao FJ; McGrath SP
    Environ Pollut; 2004 Nov; 132(1):113-20. PubMed ID: 15276279
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The fate of arsenic in soil-plant systems.
    Moreno-Jiménez E; Esteban E; Peñalosa JM
    Rev Environ Contam Toxicol; 2012; 215():1-37. PubMed ID: 22057929
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of soil properties on arsenic hyperaccumulation in Pteris vittata and Pityrogramma calomelanos var. austroamericana.
    Xu W; Kachenko AG; Singh B
    Int J Phytoremediation; 2010 Feb; 12(2):174-87. PubMed ID: 20734614
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A critical review of the arsenic uptake mechanisms and phytoremediation potential of Pteris vittata.
    Danh LT; Truong P; Mammucari R; Foster N
    Int J Phytoremediation; 2014; 16(5):429-53. PubMed ID: 24912227
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Arsenic accumulation by two brake ferns growing on an arsenic mine and their potential in phytoremediation.
    Wei CY; Chen TB
    Chemosphere; 2006 May; 63(6):1048-53. PubMed ID: 16297966
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phytoextraction by arsenic hyperaccumulator Pteris vittata L. from six arsenic-contaminated soils: Repeated harvests and arsenic redistribution.
    Gonzaga MI; Santos JA; Ma LQ
    Environ Pollut; 2008 Jul; 154(2):212-8. PubMed ID: 18037547
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Indigenous soil bacteria and the hyperaccumulator Pteris vittata mediate phytoremediation of soil contaminated with arsenic species.
    Abou-Shanab RAI; Mathai PP; Santelli C; Sadowsky MJ
    Ecotoxicol Environ Saf; 2020 Jun; 195():110458. PubMed ID: 32193021
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanisms of efficient As solubilization in soils and As accumulation by As-hyperaccumulator Pteris vittata.
    Han YH; Liu X; Rathinasabapathi B; Li HB; Chen Y; Ma LQ
    Environ Pollut; 2017 Aug; 227():569-577. PubMed ID: 28501771
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Arsenic uptake by native fern species in Thailand: effect of chelating agents on hyperaccumulation of arsenic by Pityrogramma calomelanos.
    Wongkongkatep J; Fukushi K; Parkpian P; DeLaune RD; Jugsujinda A
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2003; 38(12):2773-84. PubMed ID: 14672315
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Arsenic speciation for the phytoremediation by the Chinese brake fern, Pteris vittata.
    Shoji R; Yajima R; Yano Y
    J Environ Sci (China); 2008; 20(12):1463-8. PubMed ID: 19209633
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.