These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 12685714)

  • 1. A new tool for laboratory studies on volatilization: extension of applicability of the photovolatility chamber.
    Wolters A; Kromer T; Linnemann V; Schäffer A; Vereecken H
    Environ Toxicol Chem; 2003 Apr; 22(4):791-7. PubMed ID: 12685714
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photodegradation and volatility of pesticides: chamber experiments.
    Kromer T; Ophoff H; Stork A; Führ F
    Environ Sci Pollut Res Int; 2004; 11(2):107-20. PubMed ID: 15108858
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pesticide volatilization from soil: lysimeter measurements versus predictions of European registration models.
    Wolters A; Linnemann V; Herbst M; Klein M; Schäffer A; Vereecken H
    J Environ Qual; 2003; 32(4):1183-93. PubMed ID: 12931871
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modelling of the long-term fate of pesticide residues in agricultural soils and their surface exchange with the atmosphere: Part II. Projected long-term fate of pesticide residues.
    Scholtz MT; Bidleman TF
    Sci Total Environ; 2007 May; 377(1):61-80. PubMed ID: 17346778
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Volatilization modeling of two herbicides from soil in a wind tunnel experiment under varying humidity conditions.
    Schneider M; Goss KU
    Environ Sci Technol; 2012 Nov; 46(22):12527-33. PubMed ID: 23130847
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Diurnal variation of diazinon volatilization: soil moisture effects.
    Reichman R; Rolston DE; Yates SR; Skaggs TH
    Environ Sci Technol; 2011 Mar; 45(6):2144-9. PubMed ID: 21319734
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photodegradation of antibiotics on soil surfaces: laboratory studies on sulfadiazine in an ozone-controlled environment.
    Wolters A; Steffens M
    Environ Sci Technol; 2005 Aug; 39(16):6071-8. PubMed ID: 16173565
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An improved screening tool for predicting volatilization of pesticides applied to soils.
    Davie-Martin CL; Hageman KJ; Chin YP
    Environ Sci Technol; 2013 Jan; 47(2):868-76. PubMed ID: 23214927
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determination of pesticide emission fluxes from canopy using micrometeorological methods.
    De Backer E; Samson R; Steurbaut W
    Commun Agric Appl Biol Sci; 2006; 71(1):103-6. PubMed ID: 17191484
    [No Abstract]   [Full Text] [Related]  

  • 10. Dry deposition and soil-air gas exchange of polychlorinated biphenyls (PCBs) in an industrial area.
    Bozlaker A; Odabasi M; Muezzinoglu A
    Environ Pollut; 2008 Dec; 156(3):784-93. PubMed ID: 18640753
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Measurement of trifluralin volatilization in the field: Relation to soil residue and effect of soil incorporation.
    Bedos C; Rousseau-Djabri MF; Gabrielle B; Flura D; Durand B; Barriuso E; Cellier P
    Environ Pollut; 2006 Dec; 144(3):958-66. PubMed ID: 16563584
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Measuring herbicide volatilization from bare soil.
    Yates SR
    Environ Sci Technol; 2006 May; 40(10):3223-8. PubMed ID: 16749685
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Test system to establish mass balances for 14C-labeled substances in soil-plant-atmosphere systems under field conditions.
    Schroll R; Kühn S
    Environ Sci Technol; 2004 Mar; 38(5):1537-44. PubMed ID: 15046357
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design and laboratory testing of a chamber device to measure total flux of volatile organic compounds from the unsaturated zone under natural conditions.
    Tillman FD; Smith JA
    J Contam Hydrol; 2004 Nov; 75(1-2):71-90. PubMed ID: 15385099
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pesticide volatilization from plants: improvement of the PEC model PELMO based on a boundary-layer concept.
    Wolters A; Leistra M; Linnemann V; Klein M; Schäffer A; Vereecken H
    Environ Sci Technol; 2004 May; 38(10):2885-93. PubMed ID: 15212264
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Volatilization of plant protective agents from plants and soil as potential sources of exposure].
    Goedicke HJ
    Z Gesamte Hyg; 1989 Mar; 35(3):146-8. PubMed ID: 2728544
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development and application of dynamic air chambers for measurement of volatilization fluxes of benzene and MTBE from constructed wetlands planted with common reed.
    Reiche N; Lorenz W; Borsdorf H
    Chemosphere; 2010 Mar; 79(2):162-8. PubMed ID: 20132961
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Environmental fate of methyl bromide as a soil fumigant.
    Yates SR; Gan J; Papiernik SK
    Rev Environ Contam Toxicol; 2003; 177():45-122. PubMed ID: 12666818
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling long-term uptake and re-volatilization of semi-volatile organic compounds (SVOCs) across the soil-atmosphere interface.
    Bao Z; Haberer C; Maier U; Beckingham B; Amos RT; Grathwohl P
    Sci Total Environ; 2015 Dec; 538():789-801. PubMed ID: 26340582
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction of pesticide volatilization with PELMO 3.31.
    Ferrari F; Klein M; Capri E; Trevisan M
    Chemosphere; 2005 Jul; 60(5):705-13. PubMed ID: 15963809
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.