BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 12685940)

  • 1. Simulating the swelling and deformation behaviour in soft tissues using a convective thermal analogy.
    Wu JZ; Herzog W
    Biomed Eng Online; 2002 Dec; 1():8. PubMed ID: 12685940
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A triphasic theory for the swelling and deformation behaviors of articular cartilage.
    Lai WM; Hou JS; Mow VC
    J Biomech Eng; 1991 Aug; 113(3):245-58. PubMed ID: 1921350
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The influence of the fixed negative charges on mechanical and electrical behaviors of articular cartilage under unconfined compression.
    Sun DD; Guo XE; Likhitpanichkul M; Lai WM; Mow VC
    J Biomech Eng; 2004 Feb; 126(1):6-16. PubMed ID: 15171124
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A biphasic finite element study on the role of the articular cartilage superficial zone in confined compression.
    Guo H; Maher SA; Torzilli PA
    J Biomech; 2015 Jan; 48(1):166-70. PubMed ID: 25465194
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of the finite element software ABAQUS for biomechanical modelling of biphasic tissues.
    Wu JZ; Herzog W; Epstein M
    J Biomech; 1998 Feb; 31(2):165-9. PubMed ID: 9593211
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A fibril-reinforced poroviscoelastic swelling model for articular cartilage.
    Wilson W; van Donkelaar CC; van Rietbergen B; Huiskes R
    J Biomech; 2005 Jun; 38(6):1195-204. PubMed ID: 15863103
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comparison between mechano-electrochemical and biphasic swelling theories for soft hydrated tissues.
    Wilson W; van Donkelaar CC; Huyghe JM
    J Biomech Eng; 2005 Feb; 127(1):158-65. PubMed ID: 15868798
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Finite element methods for the biomechanics of soft hydrated tissues: nonlinear analysis and adaptive control of meshes.
    Spilker RL; de Almeida ES; Donzelli PS
    Crit Rev Biomed Eng; 1992; 20(3-4):279-313. PubMed ID: 1478094
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modelling the inclusion of swelling pressure in a tissue level poroviscoelastic model of cartilage deformation.
    Whiteley JP; Gaffney EA
    Math Med Biol; 2020 Sep; 37(3):389-428. PubMed ID: 32072158
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Application of the u-p finite element method to the study of articular cartilage.
    Wayne JS; Woo SL; Kwan MK
    J Biomech Eng; 1991 Nov; 113(4):397-403. PubMed ID: 1762436
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Finite element simulation of location- and time-dependent mechanical behavior of chondrocytes in unconfined compression tests.
    Wu JZ; Herzog W
    Ann Biomed Eng; 2000 Mar; 28(3):318-30. PubMed ID: 10784096
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of friction on the unconfined compressive response of articular cartilage: a finite element analysis.
    Spilker RL; Suh JK; Mow VC
    J Biomech Eng; 1990 May; 112(2):138-46. PubMed ID: 2345443
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A finite element formulation and program to study transient swelling and load-carriage in healthy and degenerate articular cartilage.
    Olsen S; Oloyede A; Adam C
    Comput Methods Biomech Biomed Engin; 2004 Apr; 7(2):111-20. PubMed ID: 15203959
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modelling of location- and time-dependent deformation of chondrocytes during cartilage loading.
    Wu JZ; Herzog W; Epstein M
    J Biomech; 1999 Jun; 32(6):563-72. PubMed ID: 10332619
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Strain-rate dependence of cartilage stiffness in unconfined compression: the role of fibril reinforcement versus tissue volume change in fluid pressurization.
    Li LP; Herzog W
    J Biomech; 2004 Mar; 37(3):375-82. PubMed ID: 14757457
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A molecular model of proteoglycan-associated electrostatic forces in cartilage mechanics.
    Buschmann MD; Grodzinsky AJ
    J Biomech Eng; 1995 May; 117(2):179-92. PubMed ID: 7666655
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Glycosaminoglycan network geometry may contribute to anisotropic hydraulic permeability in cartilage under compression.
    Quinn TM; Dierickx P; Grodzinsky AJ
    J Biomech; 2001 Nov; 34(11):1483-90. PubMed ID: 11672723
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Extraction of mechanical properties of articular cartilage from osmotic swelling behavior monitored using high frequency ultrasound.
    Wang Q; Zheng YP; Niu HJ; Mak AF
    J Biomech Eng; 2007 Jun; 129(3):413-22. PubMed ID: 17536909
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A microstructural model of elastostatic properties of articular cartilage in confined compression.
    Bursać P; McGrath CV; Eisenberg SR; Stamenović D
    J Biomech Eng; 2000 Aug; 122(4):347-53. PubMed ID: 11036557
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Numerical simulation of deformations and electrical potentials in a cartilage substitute.
    Frijns AJ; Huyghe JM; Kaasschieter EF; Wijlaars MW
    Biorheology; 2003; 40(1-3):123-31. PubMed ID: 12454396
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.