BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

385 related articles for article (PubMed ID: 12686101)

  • 1. New quinoproteins in oxidative fermentation.
    Adachi O; Moonmangmee D; Shinagawa E; Toyama H; Yamada M; Matsushita K
    Biochim Biophys Acta; 2003 Apr; 1647(1-2):10-7. PubMed ID: 12686101
    [TBL] [Abstract][Full Text] [Related]  

  • 2. New developments in oxidative fermentation.
    Adachi O; Moonmangmee D; Toyama H; Yamada M; Shinagawa E; Matsushita K
    Appl Microbiol Biotechnol; 2003 Feb; 60(6):643-53. PubMed ID: 12664142
    [TBL] [Abstract][Full Text] [Related]  

  • 3. L-erythrulose production by oxidative fermentation is catalyzed by PQQ-containing membrane-bound dehydrogenase.
    Moonmangmee D; Adachi O; Shinagawa E; Toyama H; Theeragool G; Lotong N; Matsushita K
    Biosci Biotechnol Biochem; 2002 Feb; 66(2):307-18. PubMed ID: 11999403
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Purification and characterization of membrane-bound quinoprotein quinate dehydrogenase.
    Adachi O; Yoshihara N; Tanasupawat S; Toyama H; Matsushita K
    Biosci Biotechnol Biochem; 2003 Oct; 67(10):2115-23. PubMed ID: 14586098
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Membrane-bound sugar alcohol dehydrogenase in acetic acid bacteria catalyzes L-ribulose formation and NAD-dependent ribitol dehydrogenase is independent of the oxidative fermentation.
    Adachi O; Fujii Y; Ano Y; Moonmangmee D; Toyama H; Shinagawa E; Theeragool G; Lotong N; Matsushita K
    Biosci Biotechnol Biochem; 2001 Jan; 65(1):115-25. PubMed ID: 11272814
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Membrane-bound quinoprotein D-arabitol dehydrogenase of Gluconobacter suboxydans IFO 3257: a versatile enzyme for the oxidative fermentation of various ketoses.
    Adachi O; Fujii Y; Ghaly MF; Toyama H; Shinagawa E; Matsushita K
    Biosci Biotechnol Biochem; 2001 Dec; 65(12):2755-62. PubMed ID: 11826974
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 5-keto-D-gluconate production is catalyzed by a quinoprotein glycerol dehydrogenase, major polyol dehydrogenase, in gluconobacter species.
    Matsushita K; Fujii Y; Ano Y; Toyama H; Shinjoh M; Tomiyama N; Miyazaki T; Sugisawa T; Hoshino T; Adachi O
    Appl Environ Microbiol; 2003 Apr; 69(4):1959-66. PubMed ID: 12676670
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Membrane-bound D-sorbitol dehydrogenase of Gluconobacter suboxydans IFO 3255--enzymatic and genetic characterization.
    Hoshino T; Sugisawa T; Shinjoh M; Tomiyama N; Miyazaki T
    Biochim Biophys Acta; 2003 Apr; 1647(1-2):278-88. PubMed ID: 12686146
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Purification and characterization of membrane-bound quinoprotein cyclic alcohol dehydrogenase from Gluconobacter frateurii CHM 9.
    Moonmangmee D; Fujii Y; Toyama H; Theeragool G; Lotong N; Matsushita K; Adachi O
    Biosci Biotechnol Biochem; 2001 Dec; 65(12):2763-72. PubMed ID: 11826975
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Membrane-bound glycerol dehydrogenase catalyzes oxidation of D-pentonates to 4-keto-D-pentonates, D-fructose to 5-keto-D-fructose, and D-psicose to 5-keto-D-psicose.
    Ano Y; Hours RA; Akakabe Y; Kataoka N; Yakushi T; Matsushita K; Adachi O
    Biosci Biotechnol Biochem; 2017 Feb; 81(2):411-418. PubMed ID: 27849146
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 3-dehydroquinate production by oxidative fermentation and further conversion of 3-dehydroquinate to the intermediates in the shikimate pathway.
    Adachi O; Tanasupawat S; Yoshihara N; Toyama H; Matsushita K
    Biosci Biotechnol Biochem; 2003 Oct; 67(10):2124-31. PubMed ID: 14586099
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conversion of quinate to 3-dehydroshikimate by Ca-alginate-immobilized membrane of Gluconobacter oxydans IFO 3244 and subsequent asymmetric reduction of 3-dehydroshikimate to shikimate by immobilized cytoplasmic NADP-shikimate dehydrogenase.
    Adachi O; Ano Y; Shinagawa E; Yakushi T; Matsushita K
    Biosci Biotechnol Biochem; 2010; 74(12):2438-44. PubMed ID: 21150112
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quinate oxidation in Gluconobacter oxydans IFO3244: purification and characterization of quinoprotein quinate dehydrogenase.
    Vangnai AS; Toyama H; De-Eknamkul W; Yoshihara N; Adachi O; Matsushita K
    FEMS Microbiol Lett; 2004 Dec; 241(2):157-62. PubMed ID: 15598527
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular cloning and functional expression of D-sorbitol dehydrogenase from Gluconobacter suboxydans IF03255, which requires pyrroloquinoline quinone and hydrophobic protein SldB for activity development in E. coli.
    Miyazaki T; Tomiyama N; Shinjoh M; Hoshino T
    Biosci Biotechnol Biochem; 2002 Feb; 66(2):262-70. PubMed ID: 11999397
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular properties of membrane-bound FAD-containing D-sorbitol dehydrogenase from thermotolerant Gluconobacter frateurii isolated from Thailand.
    Toyama H; Soemphol W; Moonmangmee D; Adachi O; Matsushita K
    Biosci Biotechnol Biochem; 2005 Jun; 69(6):1120-9. PubMed ID: 15973043
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Distinct physiological roles of two membrane-bound dehydrogenases responsible for D-sorbitol oxidation in Gluconobacter frateurii.
    Soemphol W; Adachi O; Matsushita K; Toyama H
    Biosci Biotechnol Biochem; 2008 Mar; 72(3):842-50. PubMed ID: 18323643
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aldopentoses as new substrates for the membrane-bound, pyrroloquinoline quinone-dependent glycerol (polyol) dehydrogenase of Gluconobacter sp.
    Yakushi T; Terada Y; Ozaki S; Kataoka N; Akakabe Y; Adachi O; Matsutani M; Matsushita K
    Appl Microbiol Biotechnol; 2018 Apr; 102(7):3159-3171. PubMed ID: 29468297
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The biochemistry, physiology and genetics of PQQ and PQQ-containing enzymes.
    Goodwin PM; Anthony C
    Adv Microb Physiol; 1998; 40():1-80. PubMed ID: 9889976
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Isolation and characterization of thermotolerant Gluconobacter strains catalyzing oxidative fermentation at higher temperatures.
    Moonmangmee D; Adachi O; Ano Y; Shinagawa E; Toyama H; Theeragool G; Lotong N; Matsushita K
    Biosci Biotechnol Biochem; 2000 Nov; 64(11):2306-15. PubMed ID: 11193396
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Generation mechanism and purification of an inactive form convertible in vivo to the active form of quinoprotein alcohol dehydrogenase in Gluconobacter suboxydans.
    Matsushita K; Yakushi T; Takaki Y; Toyama H; Adachi O
    J Bacteriol; 1995 Nov; 177(22):6552-9. PubMed ID: 7592433
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.