BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 12686104)

  • 1. Reaction mechanism and regulation of cystathionine beta-synthase.
    Banerjee R; Evande R; Kabil O; Ojha S; Taoka S
    Biochim Biophys Acta; 2003 Apr; 1647(1-2):30-5. PubMed ID: 12686104
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Redox regulation and reaction mechanism of human cystathionine-beta-synthase: a PLP-dependent hemesensor protein.
    Banerjee R; Zou CG
    Arch Biochem Biophys; 2005 Jan; 433(1):144-56. PubMed ID: 15581573
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Human cystathionine beta-synthase is a heme sensor protein. Evidence that the redox sensor is heme and not the vicinal cysteines in the CXXC motif seen in the crystal structure of the truncated enzyme.
    Taoka S; Lepore BW; Kabil O; Ojha S; Ringe D; Banerjee R
    Biochemistry; 2002 Aug; 41(33):10454-61. PubMed ID: 12173932
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transsulfuration in Saccharomyces cerevisiae is not dependent on heme: purification and characterization of recombinant yeast cystathionine beta-synthase.
    Maclean KN; Janosík M; Oliveriusová J; Kery V; Kraus JP
    J Inorg Biochem; 2000 Aug; 81(3):161-71. PubMed ID: 11051561
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Allosteric communication between the pyridoxal 5'-phosphate (PLP) and heme sites in the H2S generator human cystathionine β-synthase.
    Yadav PK; Xie P; Banerjee R
    J Biol Chem; 2012 Nov; 287(45):37611-20. PubMed ID: 22977242
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dioxygen reactivity and heme redox potential of truncated human cystathionine beta-synthase.
    Carballal S; Madzelan P; Zinola CF; Graña M; Radi R; Banerjee R; Alvarez B
    Biochemistry; 2008 Mar; 47(10):3194-201. PubMed ID: 18278872
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assignment of enzymatic functions to specific regions of the PLP-dependent heme protein cystathionine beta-synthase.
    Taoka S; Widjaja L; Banerjee R
    Biochemistry; 1999 Oct; 38(40):13155-61. PubMed ID: 10529187
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Alleviation of intrasteric inhibition by the pathogenic activation domain mutation, D444N, in human cystathionine beta-synthase.
    Evande R; Blom H; Boers GH; Banerjee R
    Biochemistry; 2002 Oct; 41(39):11832-7. PubMed ID: 12269827
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solvent-accessible cysteines in human cystathionine beta-synthase: crucial role of cysteine 431 in S-adenosyl-L-methionine binding.
    Frank N; Kery V; Maclean KN; Kraus JP
    Biochemistry; 2006 Sep; 45(36):11021-9. PubMed ID: 16953589
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evidence for heme-mediated redox regulation of human cystathionine beta-synthase activity.
    Taoka S; Ohja S; Shan X; Kruger WD; Banerjee R
    J Biol Chem; 1998 Sep; 273(39):25179-84. PubMed ID: 9737978
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of cystathionine beta-synthase in homocysteine metabolism.
    Jhee KH; Kruger WD
    Antioxid Redox Signal; 2005; 7(5-6):813-22. PubMed ID: 15890029
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Disease-causing cystathionine β-synthase linker mutations impair allosteric regulation.
    Roman JV; Mascarenhas R; Ceric K; Ballou DP; Banerjee R
    J Biol Chem; 2023 Dec; 299(12):105449. PubMed ID: 37949228
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ferrous human cystathionine beta-synthase loses activity during enzyme assay due to a ligand switch process.
    Cherney MM; Pazicni S; Frank N; Marvin KA; Kraus JP; Burstyn JN
    Biochemistry; 2007 Nov; 46(45):13199-210. PubMed ID: 17956124
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Resonance Raman characterization of the heme cofactor in cystathionine beta-synthase. Identification of the Fe-S(Cys) vibration in the six-coordinate low-spin heme.
    Green EL; Taoka S; Banerjee R; Loehr TM
    Biochemistry; 2001 Jan; 40(2):459-63. PubMed ID: 11148040
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional properties of the active core of human cystathionine beta-synthase crystals.
    Bruno S; Schiaretti F; Burkhard P; Kraus JP; Janosik M; Mozzarelli A
    J Biol Chem; 2001 Jan; 276(1):16-9. PubMed ID: 11042162
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of the heme and pyridoxal phosphate cofactors of human cystathionine beta-synthase reveals nonequivalent active sites.
    Taoka S; West M; Banerjee R
    Biochemistry; 1999 Mar; 38(9):2738-44. PubMed ID: 10052944
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crystal structure of cystathionine β-synthase from honeybee Apis mellifera.
    Giménez-Mascarell P; Majtan T; Oyenarte I; Ereño-Orbea J; Majtan J; Klaudiny J; Kraus JP; Martínez-Cruz LA
    J Struct Biol; 2018 Apr; 202(1):82-93. PubMed ID: 29275181
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pathways and regulation of homocysteine metabolism in mammals.
    Finkelstein JD
    Semin Thromb Hemost; 2000; 26(3):219-25. PubMed ID: 11011839
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stopped-flow kinetic analysis of the reaction catalyzed by the full-length yeast cystathionine beta-synthase.
    Taoka S; Banerjee R
    J Biol Chem; 2002 Jun; 277(25):22421-5. PubMed ID: 11948191
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural insights into pathogenic mutations in heme-dependent cystathionine-beta-synthase.
    Yamanishi M; Kabil O; Sen S; Banerjee R
    J Inorg Biochem; 2006 Dec; 100(12):1988-95. PubMed ID: 17069888
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.