These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
8. Nanostructured calcium phosphates for biomedical applications: novel synthesis and characterization. Kumta PN; Sfeir C; Lee DH; Olton D; Choi D Acta Biomater; 2005 Jan; 1(1):65-83. PubMed ID: 16701781 [TBL] [Abstract][Full Text] [Related]
9. Formation and transformation of calcium phosphate phases under biologically relevant conditions: Experiments and modelling. Carino A; Ludwig C; Cervellino A; Müller E; Testino A Acta Biomater; 2018 Jul; 74():478-488. PubMed ID: 29778896 [TBL] [Abstract][Full Text] [Related]
10. Phase development during setting and hardening of a bone cement based on α-tricalcium and octacalcium phosphates. Komlev VS; Fadeeva IV; Barinov SM; Rau JV; Fosca M; Gurin AN; Gurin NA J Biomater Appl; 2012 May; 26(8):1051-68. PubMed ID: 21273259 [TBL] [Abstract][Full Text] [Related]
11. Zinc effect on the in vitro formation of calcium phosphates: relevance to clinical inhibition of calculus formation. LeGeros RZ; Bleiwas CB; Retino M; Rohanizadeh R; LeGeros JP Am J Dent; 1999 Apr; 12(2):65-71. PubMed ID: 10477985 [TBL] [Abstract][Full Text] [Related]
12. Underlying Role of Brushite in Pathological Mineralization of Hydroxyapatite. Zhang J; Wang L; Putnis CV J Phys Chem B; 2019 Apr; 123(13):2874-2881. PubMed ID: 30840456 [TBL] [Abstract][Full Text] [Related]
13. Effects of citrate and NaCl on size, morphology, crystallinity and microstructure of calcium phosphates obtained from aqueous solutions at acidic or near-neutral pH. Mekmene O; Rouillon T; Quillard S; Pilet P; Bouler JM; Pezennec S; Gaucheron F J Dairy Res; 2012 May; 79(2):238-48. PubMed ID: 22559064 [TBL] [Abstract][Full Text] [Related]
14. Petal-like apatite formed on the surface of tricalcium phosphate ceramic after soaking in distilled water. Lin FH; Liao CJ; Chen KS; Su JS; Lin CP Biomaterials; 2001 Nov; 22(22):2981-92. PubMed ID: 11575472 [TBL] [Abstract][Full Text] [Related]
15. A dual constant-composition titration system as an in vitro resorption model for comparing dissolution rates of calcium phosphate biomaterials. Chow LC; Markovic M; Takagi S J Biomed Mater Res B Appl Biomater; 2003 May; 65(2):245-51. PubMed ID: 12687717 [TBL] [Abstract][Full Text] [Related]
16. Solubility of TTCP and beta-TCP by solid titration. Pan HB; Darvell BW Arch Oral Biol; 2009 Jul; 54(7):671-7. PubMed ID: 19414172 [TBL] [Abstract][Full Text] [Related]
17. Effects of Calcium and Phosphate on Dissolution of Enamel, Dentin and Hydroxyapatite in Citric Acid. Shellis RP; Barbour ME; Parker DM; Addy M; Lussi A Swiss Dent J; 2023 Jul; 133(7-8):432-438. PubMed ID: 36861646 [TBL] [Abstract][Full Text] [Related]
18. Stability and mutual conversion of enamel apatite and brushite at 20 degrees C as a function of pH of the aqueous phase. Larsen MJ; Jensen SJ Arch Oral Biol; 1989; 34(12):963-8. PubMed ID: 2610631 [TBL] [Abstract][Full Text] [Related]
19. The effect of calcium phosphate ceramic composition and structure on in vitro behavior. I. Dissolution. Ducheyne P; Radin S; King L J Biomed Mater Res; 1993 Jan; 27(1):25-34. PubMed ID: 8380596 [TBL] [Abstract][Full Text] [Related]