These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 12686211)

  • 21. Cryobiology of rat embryos II: A theoretical model for the development of interrupted slow freezing procedures.
    Liu J; Woods EJ; Agca Y; Critser ES; Critser JK
    Biol Reprod; 2000 Nov; 63(5):1303-12. PubMed ID: 11058533
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Systematic parameter optimization of a Me(2)SO- and serum-free cryopreservation protocol for human mesenchymal stem cells.
    Freimark D; Sehl C; Weber C; Hudel K; Czermak P; Hofmann N; Spindler R; Glasmacher B
    Cryobiology; 2011 Oct; 63(2):67-75. PubMed ID: 21620818
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Intracellular ice formation during the freezing of hepatocytes cultured in a double collagen gel.
    Hubel A; Toner M; Cravalho EG; Yarmush ML; Tompkins RG
    Biotechnol Prog; 1991; 7(6):554-9. PubMed ID: 1367755
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Quantitative cryomicroscopic analysis of intracellular freezing of granulocytes without cryoadditive.
    Scheiwe MW; Körber C
    Cryobiology; 1987 Oct; 24(5):473-83. PubMed ID: 3652726
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Active control of the nucleation temperature enhances freezing survival of multipotent mesenchymal stromal cells.
    Lauterboeck L; Hofmann N; Mueller T; Glasmacher B
    Cryobiology; 2015 Dec; 71(3):384-90. PubMed ID: 26499840
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Extra- and intra-cellular ice formation in Stage I and II Xenopus laevis oocytes.
    Guenther JF; Seki S; Kleinhans FW; Edashige K; Roberts DM; Mazur P
    Cryobiology; 2006 Jun; 52(3):401-16. PubMed ID: 16600207
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Survival of mouse oocytes after being cooled in a vitrification solution to -196°C at 95° to 70,000°C/min and warmed at 610° to 118,000°C/min: A new paradigm for cryopreservation by vitrification.
    Mazur P; Seki S
    Cryobiology; 2011 Feb; 62(1):1-7. PubMed ID: 21055397
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Starfish oocytes form intracellular ice at unusually high temperatures.
    Köseoğlu M; Eroğlu A; Toner M; Sadler KC
    Cryobiology; 2001 Nov; 43(3):248-59. PubMed ID: 11888218
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Quantification of Intracellular Ice Formation and Recrystallization During Freeze-Thaw Cycles and Their Relationship with the Viability of Pig Iliac Endothelium Cells.
    Liu X; Zhao G; Shu Z; Niu D; Zhang Z; Zhou P; Cao Y; Gao D
    Biopreserv Biobank; 2016 Dec; 14(6):511-519. PubMed ID: 27532801
    [TBL] [Abstract][Full Text] [Related]  

  • 30. High ice nucleation temperature of zebrafish embryos: slow-freezing is not an option.
    Hagedorn M; Peterson A; Mazur P; Kleinhans FW
    Cryobiology; 2004 Oct; 49(2):181-9. PubMed ID: 15351689
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Transient loss of membrane integrity following intracellular ice formation in dimethyl sulfoxide-treated hepatocyte and endothelial cell monolayers.
    William N; Acker JP
    Cryobiology; 2020 Dec; 97():217-221. PubMed ID: 33031823
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Calorimetric measurement of water transport and intracellular ice formation during freezing in cell suspensions.
    Mori S; Choi J; Devireddy RV; Bischof JC
    Cryobiology; 2012 Dec; 65(3):242-55. PubMed ID: 22863747
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Extra- and intra-cellular ice formation of red seabream (Pagrus major) embryos at different cooling rates.
    Li J; Zhang LL; Liu QH; Xu XZ; Xiao ZZ; Ma DY; Xu SH; Xue QZ
    Cryobiology; 2009 Aug; 59(1):48-53. PubMed ID: 19375414
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Intercellular ice propagation: experimental evidence for ice growth through membrane pores.
    Acker JP; Elliott JA; McGann LE
    Biophys J; 2001 Sep; 81(3):1389-97. PubMed ID: 11509353
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The temperature and type of intracellular ice formation in preimplantation mouse embryos as a function of the developmental stage.
    Seki S; Mazur P
    Biol Reprod; 2010 Jun; 82(6):1198-205. PubMed ID: 20164439
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Principles of cryopreservation.
    Pegg DE
    Methods Mol Biol; 2015; 1257():3-19. PubMed ID: 25428001
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Biotransport phenomena in freezing mammalian oocytes.
    Yang G; Veres M; Szalai G; Zhang A; Xu LX; He X
    Ann Biomed Eng; 2011 Jan; 39(1):580-91. PubMed ID: 20848315
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Comparison between the temperatures of intracellular ice formation in fresh mouse oocytes and embryos and those previously subjected to a vitrification procedure.
    Seki S; Mazur P
    Cryobiology; 2010 Aug; 61(1):155-7. PubMed ID: 20361953
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cryopreservation: Vitrification and Controlled Rate Cooling.
    Hunt CJ
    Methods Mol Biol; 2017; 1590():41-77. PubMed ID: 28353262
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nucleation and growth of ice crystals inside cultured hepatocytes during freezing in the presence of dimethyl sulfoxide.
    Karlsson JO; Cravalho EG; Borel Rinkes IH; Tompkins RG; Yarmush ML; Toner M
    Biophys J; 1993 Dec; 65(6):2524-36. PubMed ID: 8312489
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.