BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

293 related articles for article (PubMed ID: 12686540)

  • 1. Peptide binding induces large scale changes in inter-domain mobility in human Pin1.
    Jacobs DM; Saxena K; Vogtherr M; Bernado P; Pons M; Fiebig KM
    J Biol Chem; 2003 Jul; 278(28):26174-82. PubMed ID: 12686540
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On the benefit of bivalency in peptide ligand/pin1 interactions.
    Daum S; Lücke C; Wildemann D; Schiene-Fischer C
    J Mol Biol; 2007 Nov; 374(1):147-61. PubMed ID: 17931657
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Peptidyl-Prolyl
    Anto NP; Muraleedharan A; Nath PR; Sun Z; Keasar C; Livneh E; Braiman A; Altman A; Kong KF; Isakov N
    Front Immunol; 2023; 14():1126464. PubMed ID: 36969236
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Solution structure of the single-domain prolyl cis/trans isomerase PIN1At from Arabidopsis thaliana.
    Landrieu I; Wieruszeski JM; Wintjens R; Inzé D; Lippens G
    J Mol Biol; 2002 Jul; 320(2):321-32. PubMed ID: 12079389
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of Pin1 peptidyl-prolyl cis/trans isomerase activity by its WW binding module on a multi-phosphorylated peptide of Tau protein.
    Smet C; Wieruszeski JM; Buée L; Landrieu I; Lippens G
    FEBS Lett; 2005 Aug; 579(19):4159-64. PubMed ID: 16024016
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neighboring phosphoSer-Pro motifs in the undefined domain of IRAK1 impart bivalent advantage for Pin1 binding.
    Rogals MJ; Greenwood AI; Kwon J; Lu KP; Nicholson LK
    FEBS J; 2016 Dec; 283(24):4528-4548. PubMed ID: 27790836
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phosphorylation-dependent prolyl isomerization: a novel signaling regulatory mechanism.
    Zhou XZ; Lu PJ; Wulf G; Lu KP
    Cell Mol Life Sci; 1999 Nov; 56(9-10):788-806. PubMed ID: 11212339
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stereospecific gating of functional motions in Pin1.
    Namanja AT; Wang XJ; Xu B; Mercedes-Camacho AY; Wilson KA; Etzkorn FA; Peng JW
    Proc Natl Acad Sci U S A; 2011 Jul; 108(30):12289-94. PubMed ID: 21746900
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional conservation of phosphorylation-specific prolyl isomerases in plants.
    Yao JL; Kops O; Lu PJ; Lu KP
    J Biol Chem; 2001 Apr; 276(17):13517-23. PubMed ID: 11118438
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of phosphorylation in determining the backbone dynamics of the serine/threonine-proline motif and Pin1 substrate recognition.
    Schutkowski M; Bernhardt A; Zhou XZ; Shen M; Reimer U; Rahfeld JU; Lu KP; Fischer G
    Biochemistry; 1998 Apr; 37(16):5566-75. PubMed ID: 9548941
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural Analysis of the Pin1-CPEB1 interaction and its potential role in CPEB1 degradation.
    Schelhorn C; Martín-Malpartida P; Suñol D; Macias MJ
    Sci Rep; 2015 Oct; 5():14990. PubMed ID: 26456073
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural basis for phosphoserine-proline recognition by group IV WW domains.
    Verdecia MA; Bowman ME; Lu KP; Hunter T; Noel JP
    Nat Struct Biol; 2000 Aug; 7(8):639-43. PubMed ID: 10932246
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enzyme-linked enzyme-binding assay for Pin1 WW domain ligands.
    Mercedes-Camacho AY; Etzkorn FA
    Anal Biochem; 2010 Jul; 402(1):77-82. PubMed ID: 20230769
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The peptidyl prolyl cis/trans-isomerase Pin1 recognizes the phospho-Thr212-Pro213 site on Tau.
    Smet C; Sambo AV; Wieruszeski JM; Leroy A; Landrieu I; Buée L; Lippens G
    Biochemistry; 2004 Feb; 43(7):2032-40. PubMed ID: 14967043
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exploring the molecular function of PIN1 by nuclear magnetic resonance.
    Landrieu I; Smet C; Wieruszeski JM; Sambo AV; Wintjens R; Buée L; Lippens G
    Curr Protein Pept Sci; 2006 Jun; 7(3):179-94. PubMed ID: 16787258
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular Mechanism of the Pin1-Histone H1 Interaction.
    Jinasena D; Simmons R; Gyamfi H; Fitzkee NC
    Biochemistry; 2019 Feb; 58(6):788-798. PubMed ID: 30507159
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Complete thermodynamic and kinetic characterization of the isomer-specific interaction between Pin1-WW domain and the amyloid precursor protein cytoplasmic tail phosphorylated at Thr668.
    De S; Greenwood AI; Rogals MJ; Kovrigin EL; Lu KP; Nicholson LK
    Biochemistry; 2012 Oct; 51(43):8583-96. PubMed ID: 23025283
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Substrate recognition reduces side-chain flexibility for conserved hydrophobic residues in human Pin1.
    Namanja AT; Peng T; Zintsmaster JS; Elson AC; Shakour MG; Peng JW
    Structure; 2007 Mar; 15(3):313-27. PubMed ID: 17355867
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Negative Regulation of Peptidyl-Prolyl Isomerase Activity by Interdomain Contact in Human Pin1.
    Wang X; Mahoney BJ; Zhang M; Zintsmaster JS; Peng JW
    Structure; 2015 Dec; 23(12):2224-2233. PubMed ID: 26602185
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Restricted domain mobility in the Candida albicans Ess1 prolyl isomerase.
    McNaughton L; Li Z; Van Roey P; Hanes SD; LeMaster DM
    Biochim Biophys Acta; 2010 Jul; 1804(7):1537-41. PubMed ID: 20304107
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.