These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 12686552)
61. Repression of Smad2 and Smad3 transactivating activity by association with a novel splice variant of CCAAT-binding factor C subunit. Chen F; Ogawa K; Liu X; Stringfield TM; Chen Y Biochem J; 2002 Jun; 364(Pt 2):571-7. PubMed ID: 12023901 [TBL] [Abstract][Full Text] [Related]
62. Novel function of androgen receptor-associated protein 55/Hic-5 as a negative regulator of Smad3 signaling. Wang H; Song K; Sponseller TL; Danielpour D J Biol Chem; 2005 Feb; 280(7):5154-62. PubMed ID: 15561701 [TBL] [Abstract][Full Text] [Related]
63. An essential role for Mad homology domain 1 in the association of Smad3 with histone deacetylase activity*. Liberati NT; Moniwa M; Borton AJ; Davie JR; Wang XF J Biol Chem; 2001 Jun; 276(25):22595-603. PubMed ID: 11306568 [TBL] [Abstract][Full Text] [Related]
64. Structural basis for the functional difference between Smad2 and Smad3 in FAST-2 (forkhead activin signal transducer-2)-mediated transcription. Nagarajan RP; Chen Y Biochem J; 2000 Aug; 350 Pt 1(Pt 1):253-9. PubMed ID: 10926851 [TBL] [Abstract][Full Text] [Related]
68. ATF-2 is a common nuclear target of Smad and TAK1 pathways in transforming growth factor-beta signaling. Sano Y; Harada J; Tashiro S; Gotoh-Mandeville R; Maekawa T; Ishii S J Biol Chem; 1999 Mar; 274(13):8949-57. PubMed ID: 10085140 [TBL] [Abstract][Full Text] [Related]
69. Tenascin-C upregulation by transforming growth factor-beta in human dermal fibroblasts involves Smad3, Sp1, and Ets1. Jinnin M; Ihn H; Asano Y; Yamane K; Trojanowska M; Tamaki K Oncogene; 2004 Mar; 23(9):1656-67. PubMed ID: 15001984 [TBL] [Abstract][Full Text] [Related]
70. Transforming growth factor-beta-induced transcription of the Alzheimer beta-amyloid precursor protein gene involves interaction between the CTCF-complex and Smads. Burton T; Liang B; Dibrov A; Amara F Biochem Biophys Res Commun; 2002 Jul; 295(3):713-23. PubMed ID: 12099698 [TBL] [Abstract][Full Text] [Related]
71. Solution structure of the first three zinc fingers of TFIIIA bound to the cognate DNA sequence: determinants of affinity and sequence specificity. Wuttke DS; Foster MP; Case DA; Gottesfeld JM; Wright PE J Mol Biol; 1997 Oct; 273(1):183-206. PubMed ID: 9367756 [TBL] [Abstract][Full Text] [Related]
72. Crystal optimization and preliminary diffraction data analysis of the Smad1 MH1 domain bound to a palindromic SBE DNA element. Baburajendran N; Palasingam P; Ng CK; Jauch R; Kolatkar PR Acta Crystallogr Sect F Struct Biol Cryst Commun; 2009 Nov; 65(Pt 11):1105-9. PubMed ID: 19923727 [TBL] [Abstract][Full Text] [Related]
73. The L3 loop: a structural motif determining specific interactions between SMAD proteins and TGF-beta receptors. Lo RS; Chen YG; Shi Y; Pavletich NP; Massagué J EMBO J; 1998 Feb; 17(4):996-1005. PubMed ID: 9463378 [TBL] [Abstract][Full Text] [Related]
74. Transforming growth factor-beta induces nuclear import of Smad3 in an importin-beta1 and Ran-dependent manner. Kurisaki A; Kose S; Yoneda Y; Heldin CH; Moustakas A Mol Biol Cell; 2001 Apr; 12(4):1079-91. PubMed ID: 11294908 [TBL] [Abstract][Full Text] [Related]
75. A novel DNA-binding motif in MarA: the first structure for an AraC family transcriptional activator. Rhee S; Martin RG; Rosner JL; Davies DR Proc Natl Acad Sci U S A; 1998 Sep; 95(18):10413-8. PubMed ID: 9724717 [TBL] [Abstract][Full Text] [Related]
76. The role of FAST-1 and Smads in transcriptional regulation by activin during early Xenopus embryogenesis. Yeo CY; Chen X; Whitman M J Biol Chem; 1999 Sep; 274(37):26584-90. PubMed ID: 10473623 [TBL] [Abstract][Full Text] [Related]
77. TGF-beta-induced phosphorylation of Smad3 regulates its interaction with coactivator p300/CREB-binding protein. Shen X; Hu PP; Liberati NT; Datto MB; Frederick JP; Wang XF Mol Biol Cell; 1998 Dec; 9(12):3309-19. PubMed ID: 9843571 [TBL] [Abstract][Full Text] [Related]
78. Cyclic adenosine 3',5'-monophosphate-elevating agents inhibit transforming growth factor-beta-induced SMAD3/4-dependent transcription via a protein kinase A-dependent mechanism. Schiller M; Verrecchia F; Mauviel A Oncogene; 2003 Dec; 22(55):8881-90. PubMed ID: 14654784 [TBL] [Abstract][Full Text] [Related]
79. A novel transcriptional factor with Ser/Thr kinase activity involved in the transforming growth factor (TGF)-beta signalling pathway. Ohta S; Takeuchi M; Deguchi M; Tsuji T; Gahara Y; Nagata K Biochem J; 2000 Sep; 350 Pt 2(Pt 2):395-404. PubMed ID: 10947953 [TBL] [Abstract][Full Text] [Related]
80. The murine gastrin promoter is synergistically activated by transforming growth factor-beta/Smad and Wnt signaling pathways. Lei S; Dubeykovskiy A; Chakladar A; Wojtukiewicz L; Wang TC J Biol Chem; 2004 Oct; 279(41):42492-502. PubMed ID: 15292219 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]