These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 12686564)

  • 1. Morphological correlates of intrinsic electrical excitability in neurons of the deep cerebellar nuclei.
    Aizenman CD; Huang EJ; Linden DJ
    J Neurophysiol; 2003 Apr; 89(4):1738-47. PubMed ID: 12686564
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Morphological and electrophysiological properties of GABAergic and non-GABAergic cells in the deep cerebellar nuclei.
    Uusisaari M; Obata K; Knöpfel T
    J Neurophysiol; 2007 Jan; 97(1):901-11. PubMed ID: 17093116
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrical properties of morphologically characterized neurons in the intergeniculate leaflet of the rat thalamus.
    Szkudlarek HJ; Raastad M
    Neuroscience; 2007 Dec; 150(2):309-18. PubMed ID: 17936514
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficacy and short-term plasticity at GABAergic synapses between Purkinje and cerebellar nuclei neurons.
    Pedroarena CM; Schwarz C
    J Neurophysiol; 2003 Feb; 89(2):704-15. PubMed ID: 12574448
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rebound excitation triggered by synaptic inhibition in cerebellar nuclear neurons is suppressed by selective T-type calcium channel block.
    Boehme R; Uebele VN; Renger JJ; Pedroarena C
    J Neurophysiol; 2011 Nov; 106(5):2653-61. PubMed ID: 21849607
    [TBL] [Abstract][Full Text] [Related]  

  • 6. GABAergic synaptic communication in the GABAergic and non-GABAergic cells in the deep cerebellar nuclei.
    Uusisaari M; Knöpfel T
    Neuroscience; 2008 Oct; 156(3):537-49. PubMed ID: 18755250
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dendritic morphology, local circuitry, and intrinsic electrophysiology of neurons in the rat medial and lateral habenular nuclei of the epithalamus.
    Kim U; Chang SY
    J Comp Neurol; 2005 Mar; 483(2):236-50. PubMed ID: 15678472
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determinants of synaptic integration and heterogeneity in rebound firing explored with data-driven models of deep cerebellar nucleus cells.
    Steuber V; Schultheiss NW; Silver RA; De Schutter E; Jaeger D
    J Comput Neurosci; 2011 Jun; 30(3):633-58. PubMed ID: 21052805
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Potentiation of mossy fiber EPSCs in the cerebellar nuclei by NMDA receptor activation followed by postinhibitory rebound current.
    Pugh JR; Raman IM
    Neuron; 2006 Jul; 51(1):113-23. PubMed ID: 16815336
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two differential frequency-dependent mechanisms regulating tonic firing of thalamic reticular neurons.
    Mistry RB; Isaac JT; Crabtree JW
    Eur J Neurosci; 2008 May; 27(10):2643-56. PubMed ID: 18547248
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrophysiological and morphological diversity of neurons from the rat subicular complex in vitro.
    Menendez de la Prida L; Suarez F; Pozo MA
    Hippocampus; 2003; 13(6):728-44. PubMed ID: 12962317
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reliable control of spike rate and spike timing by rapid input transients in cerebellar stellate cells.
    Suter KJ; Jaeger D
    Neuroscience; 2004; 124(2):305-17. PubMed ID: 14980381
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Suprachiasmatic nucleus communicates with anterior thalamic paraventricular nucleus neurons via rapid glutamatergic and gabaergic neurotransmission: state-dependent response patterns observed in vitro.
    Zhang L; Kolaj M; Renaud LP
    Neuroscience; 2006 Sep; 141(4):2059-66. PubMed ID: 16797851
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibitory synaptic plasticity regulates pyramidal neuron spiking in the rodent hippocampus.
    Saraga F; Balena T; Wolansky T; Dickson CT; Woodin MA
    Neuroscience; 2008 Jul; 155(1):64-75. PubMed ID: 18562122
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Membrane properties of excitatory and inhibitory neurons in the rat prepositus hypoglossi nucleus.
    Shino M; Ozawa S; Furuya N; Saito Y
    Eur J Neurosci; 2008 May; 27(9):2413-24. PubMed ID: 18445229
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chronic LPS exposure produces changes in intrinsic membrane properties and a sustained IL-beta-dependent increase in GABAergic inhibition in hippocampal CA1 pyramidal neurons.
    Hellstrom IC; Danik M; Luheshi GN; Williams S
    Hippocampus; 2005; 15(5):656-64. PubMed ID: 15889405
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Morphological classification of the rat lateral cerebellar nuclear neurons by principal component analysis.
    Sultan F; Czubayko U; Thier P
    J Comp Neurol; 2003 Jan; 455(2):139-55. PubMed ID: 12454981
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coding of tactile response properties in the rat deep cerebellar nuclei.
    Rowland NC; Jaeger D
    J Neurophysiol; 2005 Aug; 94(2):1236-51. PubMed ID: 16061491
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Determinants of rebound burst responses in rat cerebellar nuclear neurons to physiological stimuli.
    Dykstra S; Engbers JD; Bartoletti TM; Turner RW
    J Physiol; 2016 Feb; 594(4):985-1003. PubMed ID: 26662168
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intrinsic membrane properties and morphological characteristics of interneurons in the rat supratrigeminal region.
    Hsiao CF; Gougar K; Asai J; Chandler SH
    J Neurosci Res; 2007 Dec; 85(16):3673-86. PubMed ID: 17668857
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.