BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 12686752)

  • 1. Roles of substance P and NK(1) receptor in the brainstem in the development of emesis.
    Saito R; Takano Y; Kamiya HO
    J Pharmacol Sci; 2003 Feb; 91(2):87-94. PubMed ID: 12686752
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The ups and downs of novel antiemetic drugs, part 1: substance P, 5-HT, and the neuropharmacology of vomiting.
    Stahl SM
    J Clin Psychiatry; 2003 May; 64(5):498-9. PubMed ID: 12755650
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thapsigargin-induced activation of Ca(2+)-CaMKII-ERK in brainstem contributes to substance P release and induction of emesis in the least shrew.
    Zhong W; Chebolu S; Darmani NA
    Neuropharmacology; 2016 Apr; 103():195-210. PubMed ID: 26631534
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [The role of tachykinin NK-1 receptors in emetic action in the area postrema of ferrets].
    Saito R; Ariumi H; Kubota H; Nago S; Honda K; Takano Y; Kamiya H
    Nihon Yakurigaku Zasshi; 1999 Oct; 114 Suppl 1():209P-214P. PubMed ID: 10629882
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Arvanil, anandamide and N-arachidonoyl-dopamine (NADA) inhibit emesis through cannabinoid CB1 and vanilloid TRPV1 receptors in the ferret.
    Sharkey KA; Cristino L; Oland LD; Van Sickle MD; Starowicz K; Pittman QJ; Guglielmotti V; Davison JS; Di Marzo V
    Eur J Neurosci; 2007 May; 25(9):2773-82. PubMed ID: 17459108
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The anti-emetic action of the neurokinin(1) receptor antagonist CP-99,994 does not require the presence of the area postrema in the dog.
    Andrews PL; Kovacs M; Watson JW
    Neurosci Lett; 2001 Nov; 314(1-2):102-4. PubMed ID: 11698156
    [TBL] [Abstract][Full Text] [Related]  

  • 7. NK(3) receptors in the feline nucleus tractus solitarius are not involved with the muscle pressor response.
    Fry B; Reifsteck A; Hoover DB; Williams CA
    Neuropeptides; 2001; 35(3-4):154-61. PubMed ID: 11884205
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neural mechanisms of emesis.
    Carpenter DO
    Can J Physiol Pharmacol; 1990 Feb; 68(2):230-6. PubMed ID: 2178747
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The anti-emetic effects of CP-99,994 in the ferret and the dog: role of the NK1 receptor.
    Watson JW; Gonsalves SF; Fossa AA; McLean S; Seeger T; Obach S; Andrews PL
    Br J Pharmacol; 1995 May; 115(1):84-94. PubMed ID: 7544198
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Disorders of the central and autonomic nervous systems as a cause for emesis in infants.
    Johns DW
    Semin Pediatr Surg; 1995 Aug; 4(3):152-6. PubMed ID: 7582885
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The abdominal visceral innervation and the emetic reflex: pathways, pharmacology, and plasticity.
    Andrews PL; Davis CJ; Bingham S; Davidson HI; Hawthorn J; Maskell L
    Can J Physiol Pharmacol; 1990 Feb; 68(2):325-45. PubMed ID: 2178756
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Potential of substance P antagonists as antiemetics.
    Diemunsch P; Grélot L
    Drugs; 2000 Sep; 60(3):533-46. PubMed ID: 11030465
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cyclic vomiting syndrome: timing, targets, and treatment--a basic science perspective.
    Andrews PL
    Dig Dis Sci; 1999 Aug; 44(8 Suppl):31S-38S. PubMed ID: 10490037
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Receptor-selective agonists induce emesis and Fos expression in the brain and enteric nervous system of the least shrew (Cryptotis parva).
    Ray AP; Chebolu S; Darmani NA
    Pharmacol Biochem Behav; 2009 Nov; 94(1):211-8. PubMed ID: 19699757
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Central neurocircuitry associated with emesis.
    Hornby PJ
    Am J Med; 2001 Dec; 111 Suppl 8A():106S-112S. PubMed ID: 11749934
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential involvement of neurotransmitters through the time course of cisplatin-induced emesis as revealed by therapy with specific receptor antagonists.
    Hesketh PJ; Van Belle S; Aapro M; Tattersall FD; Naylor RJ; Hargreaves R; Carides AD; Evans JK; Horgan KJ
    Eur J Cancer; 2003 May; 39(8):1074-80. PubMed ID: 12736106
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Passive smoke effects on cough and airways in young guinea pigs: role of brainstem substance P.
    Joad JP; Munch PA; Bric JM; Evans SJ; Pinkerton KE; Chen CY; Bonham AC
    Am J Respir Crit Care Med; 2004 Feb; 169(4):499-504. PubMed ID: 14644932
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The human area postrema and other nuclei related to the emetic reflex express cAMP phosphodiesterases 4B and 4D.
    Mori F; Pérez-Torres S; De Caro R; Porzionato A; Macchi V; Beleta J; Gavaldà A; Palacios JM; Mengod G
    J Chem Neuroanat; 2010 Sep; 40(1):36-42. PubMed ID: 20347962
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of gingerol on substance P and NK1 receptor expression in a vomiting model of mink.
    Qian QH; Yue W; Chen WH; Yang ZH; Liu ZT; Wang YX
    Chin Med J (Engl); 2010 Feb; 123(4):478-84. PubMed ID: 20193490
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pharmacological MRI in awake rats reveals neural activity in area postrema and nucleus tractus solitarius: relevance as a potential biomarker for detecting drug-induced emesis.
    Chin CL; Fox GB; Hradil VP; Osinski MA; McGaraughty SP; Skoubis PD; Cox BF; Luo Y
    Neuroimage; 2006 Dec; 33(4):1152-60. PubMed ID: 17023182
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.