These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

287 related articles for article (PubMed ID: 12686996)

  • 1. Single-crystal gallium nitride nanotubes.
    Goldberger J; He R; Zhang Y; Lee S; Yan H; Choi HJ; Yang P
    Nature; 2003 Apr; 422(6932):599-602. PubMed ID: 12686996
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optical and field emission properties of thin single-crystalline GaN nanowires.
    Ha B; Seo SH; Cho JH; Yoon CS; Yoo J; Yi GC; Park CY; Lee CJ
    J Phys Chem B; 2005 Jun; 109(22):11095-9. PubMed ID: 16852353
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inorganic nanotubes: a novel platform for nanofluidics.
    Goldberger J; Fan R; Yang P
    Acc Chem Res; 2006 Apr; 39(4):239-48. PubMed ID: 16618091
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel chemical-vapor deposition technique for the synthesis of high-quality single-crystal nanowires and nanotubes.
    He M; Mohammad SN
    J Chem Phys; 2006 Feb; 124(6):64714. PubMed ID: 16483236
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crystallographic alignment of high-density gallium nitride nanowire arrays.
    Kuykendall T; Pauzauskie PJ; Zhang Y; Goldberger J; Sirbuly D; Denlinger J; Yang P
    Nat Mater; 2004 Aug; 3(8):524-8. PubMed ID: 15273744
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Single-crystal metallic nanowires and metal/semiconductor nanowire heterostructures.
    Wu Y; Xiang J; Yang C; Lu W; Lieber CM
    Nature; 2004 Jul; 430(6995):61-5. PubMed ID: 15229596
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Monocrystalline spinel nanotube fabrication based on the Kirkendall effect.
    Jin Fan H; Knez M; Scholz R; Nielsch K; Pippel E; Hesse D; Zacharias M; Gösele U
    Nat Mater; 2006 Aug; 5(8):627-31. PubMed ID: 16845423
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heterogeneous three-dimensional electronics by use of printed semiconductor nanomaterials.
    Ahn JH; Kim HS; Lee KJ; Jeon S; Kang SJ; Sun Y; Nuzzo RG; Rogers JA
    Science; 2006 Dec; 314(5806):1754-7. PubMed ID: 17170298
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Growth of nanowire superlattice structures for nanoscale photonics and electronics.
    Gudiksen MS; Lauhon LJ; Wang J; Smith DC; Lieber CM
    Nature; 2002 Feb; 415(6872):617-20. PubMed ID: 11832939
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Guided growth of large-scale, horizontally aligned arrays of single-walled carbon nanotubes and their use in thin-film transistors.
    Kocabas C; Hur SH; Gaur A; Meitl MA; Shim M; Rogers JA
    Small; 2005 Nov; 1(11):1110-6. PubMed ID: 17193404
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Formation of planar arrays of one-dimensional p-n heterojunctions using surface-directed growth of nanowires and nanowalls.
    Nikoobakht B; Herzing A
    ACS Nano; 2010 Oct; 4(10):5877-86. PubMed ID: 20843070
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assemblies of carbon nanotubes and unencapsulated sub-10-nm gold nanoparticles.
    Hang Q; Maschmann MR; Fisher TS; Janes DB
    Small; 2007 Jul; 3(7):1266-71. PubMed ID: 17487897
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrostatic-pressure-induced porous gallium nitride from nanotube bundles: an ab initio study.
    Hao S; Zhou G; Duan W; Wu J; Gu BL
    J Chem Phys; 2006 Nov; 125(17):174711. PubMed ID: 17100465
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Low-temperature vapour-liquid-solid (VLS) growth of vertically aligned silicon oxide nanowires using concurrent ion bombardment.
    Bettge M; MacLaren S; Burdin S; Wen JG; Abraham D; Petrov I; Sammann E
    Nanotechnology; 2009 Mar; 20(11):115607. PubMed ID: 19420447
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gallium-assisted growth of flute-like MgO nanotubes, Ga2O3-filled MgO nanotubes, and MgO/Ga2O3 co-axial nanotubes.
    Jie J; Wu C; Yu Y; Wang L; Hu Z
    Nanotechnology; 2009 Feb; 20(7):075602. PubMed ID: 19417423
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aligned arrays of nanotubes and segmented nanotubes on substrates fabricated by electrodeposition onto nanorods.
    Sander MS; Gao H
    J Am Chem Soc; 2005 Sep; 127(35):12158-9. PubMed ID: 16131158
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photocatalysis using GaN nanowires.
    Jung HS; Hong YJ; Li Y; Cho J; Kim YJ; Yi GC
    ACS Nano; 2008 Apr; 2(4):637-42. PubMed ID: 19206593
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Controlled growth of mesostructured crystalline iron oxide nanowires and Fe-filled carbon nanotube arrays templated by mesoporous silica SBA-16 film.
    Shi K; Chi Y; Yu H; Xin B; Fu H
    J Phys Chem B; 2005 Feb; 109(7):2546-51. PubMed ID: 16851255
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanoscale avalanche photodiodes for highly sensitive and spatially resolved photon detection.
    Hayden O; Agarwal R; Lieber CM
    Nat Mater; 2006 May; 5(5):352-6. PubMed ID: 16617344
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanoscale zirconia as a nonmetallic catalyst for graphitization of carbon and growth of single- and multiwall carbon nanotubes.
    Steiner SA; Baumann TF; Bayer BC; Blume R; Worsley MA; MoberlyChan WJ; Shaw EL; Schlögl R; Hart AJ; Hofmann S; Wardle BL
    J Am Chem Soc; 2009 Sep; 131(34):12144-54. PubMed ID: 19663436
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.