BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

361 related articles for article (PubMed ID: 12687004)

  • 1. The exocyst complex is required for targeting of Glut4 to the plasma membrane by insulin.
    Inoue M; Chang L; Hwang J; Chiang SH; Saltiel AR
    Nature; 2003 Apr; 422(6932):629-33. PubMed ID: 12687004
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantification of SNARE protein levels in 3T3-L1 adipocytes: implications for insulin-stimulated glucose transport.
    Hickson GR; Chamberlain LH; Maier VH; Gould GW
    Biochem Biophys Res Commun; 2000 Apr; 270(3):841-5. PubMed ID: 10772913
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Activation of RalA is required for insulin-stimulated Glut4 trafficking to the plasma membrane via the exocyst and the motor protein Myo1c.
    Chen XW; Leto D; Chiang SH; Wang Q; Saltiel AR
    Dev Cell; 2007 Sep; 13(3):391-404. PubMed ID: 17765682
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adipocytes from Munc18c-null mice show increased sensitivity to insulin-stimulated GLUT4 externalization.
    Kanda H; Tamori Y; Shinoda H; Yoshikawa M; Sakaue M; Udagawa J; Otani H; Tashiro F; Miyazaki J; Kasuga M
    J Clin Invest; 2005 Feb; 115(2):291-301. PubMed ID: 15690082
    [TBL] [Abstract][Full Text] [Related]  

  • 5. GLUT4 trafficking in insulin-stimulated rat adipose cells: evidence that heterotrimeric GTP-binding proteins regulate the fusion of docked GLUT4-containing vesicles.
    Ferrara CM; Cushman SW
    Biochem J; 1999 Nov; 343 Pt 3(Pt 3):571-7. PubMed ID: 10527935
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional cloning of TUG as a regulator of GLUT4 glucose transporter trafficking.
    Bogan JS; Hendon N; McKee AE; Tsao TS; Lodish HF
    Nature; 2003 Oct; 425(6959):727-33. PubMed ID: 14562105
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Subcellular localization and trafficking of the GLUT4 glucose transporter isoform in insulin-responsive cells.
    Holman GD; Cushman SW
    Bioessays; 1994 Oct; 16(10):753-9. PubMed ID: 7980479
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Activation of protein kinase C zeta induces serine phosphorylation of VAMP2 in the GLUT4 compartment and increases glucose transport in skeletal muscle.
    Braiman L; Alt A; Kuroki T; Ohba M; Bak A; Tennenbaum T; Sampson SR
    Mol Cell Biol; 2001 Nov; 21(22):7852-61. PubMed ID: 11604519
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Compartmentalization of the exocyst complex in lipid rafts controls Glut4 vesicle tethering.
    Inoue M; Chiang SH; Chang L; Chen XW; Saltiel AR
    Mol Biol Cell; 2006 May; 17(5):2303-11. PubMed ID: 16525015
    [TBL] [Abstract][Full Text] [Related]  

  • 10. TCGAP, a multidomain Rho GTPase-activating protein involved in insulin-stimulated glucose transport.
    Chiang SH; Hwang J; Legendre M; Zhang M; Kimura A; Saltiel AR
    EMBO J; 2003 Jun; 22(11):2679-91. PubMed ID: 12773384
    [TBL] [Abstract][Full Text] [Related]  

  • 11. EHD2 interacts with the insulin-responsive glucose transporter (GLUT4) in rat adipocytes and may participate in insulin-induced GLUT4 recruitment.
    Park SY; Ha BG; Choi GH; Ryu J; Kim B; Jung CY; Lee W
    Biochemistry; 2004 Jun; 43(23):7552-62. PubMed ID: 15182197
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Insulin stimulates the halting, tethering, and fusion of mobile GLUT4 vesicles in rat adipose cells.
    Lizunov VA; Matsumoto H; Zimmerberg J; Cushman SW; Frolov VA
    J Cell Biol; 2005 May; 169(3):481-9. PubMed ID: 15866888
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Insulin-stimulated GLUT4 translocation requires the CAP-dependent activation of TC10.
    Chiang SH; Baumann CA; Kanzaki M; Thurmond DC; Watson RT; Neudauer CL; Macara IG; Pessin JE; Saltiel AR
    Nature; 2001 Apr; 410(6831):944-8. PubMed ID: 11309621
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Subcellular compartmentalization and trafficking of the insulin-responsive glucose transporter, GLUT4.
    Watson RT; Pessin JE
    Exp Cell Res; 2001 Nov; 271(1):75-83. PubMed ID: 11697884
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Insulin stimulates the entry of GLUT4 into the endosomal recycling pathway by a quantal mechanism.
    Coster AC; Govers R; James DE
    Traffic; 2004 Oct; 5(10):763-71. PubMed ID: 15355512
    [TBL] [Abstract][Full Text] [Related]  

  • 16. TC10 and insulin-stimulated glucose transport.
    Chiang SH; Chang L; Saltiel AR
    Methods Enzymol; 2006; 406():701-14. PubMed ID: 16472699
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence for a role of the exocyst in insulin-stimulated Glut4 trafficking in 3T3-L1 adipocytes.
    Ewart MA; Clarke M; Kane S; Chamberlain LH; Gould GW
    J Biol Chem; 2005 Feb; 280(5):3812-6. PubMed ID: 15550383
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of 80K-H as a protein involved in GLUT4 vesicle trafficking.
    Hodgkinson CP; Mander A; Sale GJ
    Biochem J; 2005 Jun; 388(Pt 3):785-93. PubMed ID: 15707389
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Insulin-stimulated fusion of GLUT4 vesicles to plasma membrane is dependent on wortmannin-sensitive insulin signaling pathway in 3T3-L1 adipocytes.
    Kawaguchi T; Tamori Y; Yoshikawa M; Kanda H; Kasuga M
    Kobe J Med Sci; 2008 Oct; 54(4):E209-16. PubMed ID: 19258741
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MEK inhibitors impair insulin-stimulated glucose uptake in 3T3-L1 adipocytes.
    Harmon AW; Paul DS; Patel YM
    Am J Physiol Endocrinol Metab; 2004 Oct; 287(4):E758-66. PubMed ID: 15172888
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.