These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 1268722)

  • 1. Temporal sequence of frequency specific and nonspecific effects of flickering lights upon the occipital electrical activity in man.
    Yaguchi K; Iwahara S
    Brain Res; 1976 Apr; 107(1):27-38. PubMed ID: 1268722
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A proposed feedback method for studying the inhibition of EEG responses to visual stimuli.
    Mulholland TB
    Psychophysiology; 1979 Jan; 16(1):61-5. PubMed ID: 758629
    [No Abstract]   [Full Text] [Related]  

  • 3. Changes in amplitude of the EEG induced by a photic stimulus.
    Nogawa T; Katayama K; Tabata Y; Ohshio T; Kawahara T
    Electroencephalogr Clin Neurophysiol; 1976 Jan; 40(1):78-88. PubMed ID: 55350
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Clarifying frequency-dependent brightness enhancement: delta- and theta-band flicker, not alpha-band flicker, consistently seen as brightest.
    Bertrand JK; Ouellette Zuk AA; Chapman CS
    Exp Brain Res; 2019 Aug; 237(8):2061-2073. PubMed ID: 31172241
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of MEG responses to the sinusoidal flicker and the envelope of amplitude-modulated flicker.
    Okamoto Y; Nakagawa S
    Neurosci Lett; 2011 Jan; 487(2):207-10. PubMed ID: 20969920
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inter- and intrahemispheric differences in the peak frequency of rhythmic activity within the alpha band.
    Pfurtscheller G; Maresch H; Schuy S
    Electroencephalogr Clin Neurophysiol; 1977 Jan; 42(1):77-83. PubMed ID: 64351
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Connecting occipital alpha band peak frequency, visual temporal resolution, and occipital GABA levels in healthy participants and hepatic encephalopathy patients.
    Baumgarten TJ; Neugebauer J; Oeltzschner G; Füllenbach ND; Kircheis G; Häussinger D; Lange J; Wittsack HJ; Butz M; Schnitzler A
    Neuroimage Clin; 2018; 20():347-356. PubMed ID: 30109194
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stability of resonance EEG reactions to flickering light in humans.
    Fedotchev AI; Bondar AT; Konovalov VF
    Int J Psychophysiol; 1990 Sep; 9(2):189-93. PubMed ID: 2228753
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ongoing occipital rhythms and the VER. I. Stimulation at peaks of the alpha-rhythm.
    Trimble JL; Potts AM
    Invest Ophthalmol; 1975 Jul; 14(7):537-46. PubMed ID: 166959
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Alpha Frequency Entrainment Reduces the Effect of Visual Distractors.
    Wiesman AI; Wilson TW
    J Cogn Neurosci; 2019 Sep; 31(9):1392-1403. PubMed ID: 31059352
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiple spatial-frequency tuning of electrical responses from human visual cortex.
    Tyler CW; Apkarian P; Nakayama K
    Exp Brain Res; 1978 Nov; 33(3-4):535-50. PubMed ID: 729663
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Speed of Alpha-Band Oscillations Predicts the Temporal Resolution of Visual Perception.
    Samaha J; Postle BR
    Curr Biol; 2015 Nov; 25(22):2985-90. PubMed ID: 26526370
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The influence of spontaneous brain oscillations on apparent motion perception.
    Sanders LL; Auksztulewicz R; Hohlefeld FU; Busch NA; Sterzer P
    Neuroimage; 2014 Nov; 102 Pt 2():241-8. PubMed ID: 25109531
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Parameters of the prestimulation EEG during operator recognition of a meaningful photic stimulus].
    Potulova LA; Korinevskiĭ AV
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1986; 36(2):302-8. PubMed ID: 3716597
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Components of visual attentiveness in suppression of the occipital alpha rhythm.
    Bunnell DE
    Int J Neurosci; 1982 Jul; 17(1):39-42. PubMed ID: 7166473
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flicker-Induced Time Dilation Does Not Modulate EEG Correlates of Temporal Encoding.
    Herbst SK; Chaumon M; Penney TB; Busch NA
    Brain Topogr; 2015 Jul; 28(4):559-69. PubMed ID: 25117576
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hazardous nature of high-temporal-frequency strobe light stimulation: neural mechanisms revealed by magnetoencephalography.
    Shigihara Y; Tanaka M; Tsuyuguchi N; Tanaka H; Watanabe Y
    Neuroscience; 2010 Mar; 166(2):482-90. PubMed ID: 20060038
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prestimulus alpha power influences response criterion in a detection task.
    Limbach K; Corballis PM
    Psychophysiology; 2016 Aug; 53(8):1154-64. PubMed ID: 27144476
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A single glance at natural face images generate larger and qualitatively different category-selective spatio-temporal signatures than other ecologically-relevant categories in the human brain.
    Jacques C; Retter TL; Rossion B
    Neuroimage; 2016 Aug; 137():21-33. PubMed ID: 27138205
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The flickering wheel illusion: when α rhythms make a static wheel flicker.
    Sokoliuk R; VanRullen R
    J Neurosci; 2013 Aug; 33(33):13498-504. PubMed ID: 23946408
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.