These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
374 related articles for article (PubMed ID: 12687361)
1. Cadmium distribution and microlocalization in oilseed rape (Brassica napus) after long-term growth on cadmium-contaminated soil. Carrier P; Baryla A; Havaux M Planta; 2003 Apr; 216(6):939-50. PubMed ID: 12687361 [TBL] [Abstract][Full Text] [Related]
2. Leaf chlorosis in oilseed rape plants (Brassica napus) grown on cadmium-polluted soil: causes and consequences for photosynthesis and growth. Baryla A; Carrier P; Franck F; Coulomb C; Sahut C; Havaux M Planta; 2001 Apr; 212(5-6):696-709. PubMed ID: 11346943 [TBL] [Abstract][Full Text] [Related]
3. Cadmium uptake potential of Brassica napus cocropped with Brassica parachinensis and Zea mays. Selvam A; Wong JW J Hazard Mater; 2009 Aug; 167(1-3):170-8. PubMed ID: 19185420 [TBL] [Abstract][Full Text] [Related]
4. Improved phytoremediation of oilseed rape (Brassica napus) by Trichoderma mutant constructed by restriction enzyme-mediated integration (REMI) in cadmium polluted soil. Wang B; Liu L; Gao Y; Chen J Chemosphere; 2009 Mar; 74(10):1400-3. PubMed ID: 19108867 [TBL] [Abstract][Full Text] [Related]
5. Effects of root inoculation with bacteria on the growth, Cd uptake and bacterial communities associated with rape grown in Cd-contaminated soil. Chen ZJ; Sheng XF; He LY; Huang Z; Zhang WH J Hazard Mater; 2013 Jan; 244-245():709-17. PubMed ID: 23177252 [TBL] [Abstract][Full Text] [Related]
6. Cadmium stress alters the redox reaction and hormone balance in oilseed rape (Brassica napus L.) leaves. Yan H; Filardo F; Hu X; Zhao X; Fu D Environ Sci Pollut Res Int; 2016 Feb; 23(4):3758-69. PubMed ID: 26498815 [TBL] [Abstract][Full Text] [Related]
7. Hydrogen sulfide alleviates cadmium-induced morpho-physiological and ultrastructural changes in Brassica napus. Ali B; Gill RA; Yang S; Gill MB; Ali S; Rafiq MT; Zhou W Ecotoxicol Environ Saf; 2014 Dec; 110():197-207. PubMed ID: 25255479 [TBL] [Abstract][Full Text] [Related]
8. Improvement of rape (Brassica napus) plant growth and cadmium uptake by cadmium-resistant bacteria. Sheng XF; Xia JJ Chemosphere; 2006 Aug; 64(6):1036-42. PubMed ID: 16516946 [TBL] [Abstract][Full Text] [Related]
9. Phytoextraction of Cd and Zn as single or mixed pollutants from soil by rape (Brassica napus). Cojocaru P; Gusiatin ZM; Cretescu I Environ Sci Pollut Res Int; 2016 Jun; 23(11):10693-10701. PubMed ID: 26884243 [TBL] [Abstract][Full Text] [Related]
10. Distribution of Cd, Pb, Zn, Mo, and S in juvenile and mature Brassica napus L. var. napus. Romih N; Grabner B; Lakota M; Ribaric-Lasnik C Int J Phytoremediation; 2012 Mar; 14(3):282-301. PubMed ID: 22567712 [TBL] [Abstract][Full Text] [Related]
11. Cellular localization of cadmium and structural changes in maize plants grown on a cadmium contaminated soil with and without liming. Cunha KP; do Nascimento CW; Pimentel RM; Ferreira CP J Hazard Mater; 2008 Dec; 160(1):228-34. PubMed ID: 18417284 [TBL] [Abstract][Full Text] [Related]
12. Influence of iron plaque on uptake and accumulation of Cd by rice (Oryza sativa L.) seedlings grown in soil. Liu H; Zhang J; Christie P; Zhang F Sci Total Environ; 2008 May; 394(2-3):361-8. PubMed ID: 18325566 [TBL] [Abstract][Full Text] [Related]
13. Antioxidant enzyme systems and the ascorbate-glutathione cycle as contributing factors to cadmium accumulation and tolerance in two oilseed rape cultivars (Brassica napus L.) under moderate cadmium stress. Wu Z; Zhao X; Sun X; Tan Q; Tang Y; Nie Z; Qu C; Chen Z; Hu C Chemosphere; 2015 Nov; 138():526-36. PubMed ID: 26207887 [TBL] [Abstract][Full Text] [Related]
14. Cadmium toxicity and phytochelatin production in a rooted-submerged macrophyte Vallisneria spiralis exposed to low concentrations of cadmium. Wang C; Sun Q; Wang L Environ Toxicol; 2009 Jun; 24(3):271-8. PubMed ID: 18655189 [TBL] [Abstract][Full Text] [Related]
15. Phytoextraction with Brassica napus L.: a tool for sustainable management of heavy metal contaminated soils. Grispen VM; Nelissen HJ; Verkleij JA Environ Pollut; 2006 Nov; 144(1):77-83. PubMed ID: 16515826 [TBL] [Abstract][Full Text] [Related]
16. Enhanced Cd extraction of oilseed rape (Brassica napus) by plant growth-promoting bacteria isolated from Cd hyperaccumulator Sedum alfredii Hance. Pan F; Meng Q; Luo S; Shen J; Chen B; Khan KY; Japenga J; Ma X; Yang X; Feng Y Int J Phytoremediation; 2017 Mar; 19(3):281-289. PubMed ID: 27593491 [TBL] [Abstract][Full Text] [Related]
17. Citric acid assisted phytoremediation of cadmium by Brassica napus L. Ehsan S; Ali S; Noureen S; Mahmood K; Farid M; Ishaque W; Shakoor MB; Rizwan M Ecotoxicol Environ Saf; 2014 Aug; 106():164-72. PubMed ID: 24840879 [TBL] [Abstract][Full Text] [Related]
18. Manganese uptake and interactions with cadmium in the hyperaccumulator--Phytolacca Americana L. Peng K; Luo C; You W; Lian C; Li X; Shen Z J Hazard Mater; 2008 Jun; 154(1-3):674-81. PubMed ID: 18068296 [TBL] [Abstract][Full Text] [Related]
19. Sodium Hydrosulfide Mitigates Cadmium Toxicity by Promoting Cadmium Retention and Inhibiting Its Translocation from Roots to Shoots in Brassica napus. Yu Y; Zhou X; Zhu Z; Zhou K J Agric Food Chem; 2019 Jan; 67(1):433-440. PubMed ID: 30569699 [TBL] [Abstract][Full Text] [Related]
20. Nitrogen storage and remobilization in Brassica napus L. during the growth cycle: nitrogen fluxes within the plant and changes in soluble protein patterns. Rossato L; Lainé P; Ourry A J Exp Bot; 2001 Aug; 52(361):1655-63. PubMed ID: 11479330 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]