These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 1268744)

  • 1. Development of the action potential in embryo amphibian neurons in vivo.
    Spitzer NC; Baccaglini PI
    Brain Res; 1976 May; 107(3):610-6. PubMed ID: 1268744
    [No Abstract]   [Full Text] [Related]  

  • 2. Developmental changes in the inward current of the action potential of Rohon-Beard neurones.
    Baccaglini PI; Spitzer NC
    J Physiol; 1977 Sep; 271(1):93-117. PubMed ID: 915836
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Low pH selectively blocks calcium action potentials in amphibian neurons developing in culture.
    Spitzer NC
    Brain Res; 1979 Feb; 161(3):555-9. PubMed ID: 33747
    [No Abstract]   [Full Text] [Related]  

  • 4. The central nervous generation of the swimming rhythm in an amphibian embryo [proceedings].
    Kahn JA; Roberts A
    J Physiol; 1978 Apr; 277():20P-21P. PubMed ID: 650521
    [No Abstract]   [Full Text] [Related]  

  • 5. Na and Ca components of action potential in amphioxus muscle cells.
    Hagiwara S; Kidokoro Y
    J Physiol; 1971 Dec; 219(1):217-32. PubMed ID: 5158595
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exchange of calcium ions in the mammalian myocardium. Mechanisms and physiological significance.
    Reuter H
    Circ Res; 1974 May; 34(5):599-605. PubMed ID: 4597079
    [No Abstract]   [Full Text] [Related]  

  • 7. Differentiation of IKA in amphibian spinal neurons.
    Ribera AB; Spitzer NC
    J Neurosci; 1990 Jun; 10(6):1886-91. PubMed ID: 2355255
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Calcium-activated chloride channels in cultured embryonic Xenopus spinal neurons.
    Hussy N
    J Neurophysiol; 1992 Dec; 68(6):2042-50. PubMed ID: 1283407
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The timing of protein synthesis required for the development of the sodium action potential in embryonic spinal neurons.
    Blair LA
    J Neurosci; 1983 Jul; 3(7):1430-6. PubMed ID: 6306178
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Voltage- and stage-dependent uncoupling of Rohon-Beard neurones during embryonic development of Xenopus tadpoles.
    Spitzer NC
    J Physiol; 1982 Sep; 330():145-62. PubMed ID: 7175739
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The development of the action potential mechanism of amphibian neurons isolated in culture.
    Spitzer NC; Lamborghini JE
    Proc Natl Acad Sci U S A; 1976 May; 73(5):1641-5. PubMed ID: 1064036
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of lanthanum at the nodal membrane.
    Vogel W
    Experientia; 1973 Dec; 29(12):1517. PubMed ID: 4772050
    [No Abstract]   [Full Text] [Related]  

  • 13. The effect of divalent and trivalent cations on the sodium permeability of myelinated nerve fibres of Xenopus laevis.
    Brismar T
    Acta Physiol Scand; 1980 Jan; 108(1):23-9. PubMed ID: 7376904
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Calcium and the excitable cell membrane.
    Koketsu K
    Neurosci Res (N Y); 1969; 2(0):1-39. PubMed ID: 4950730
    [No Abstract]   [Full Text] [Related]  

  • 15. Physiological aspects of the motor system.
    Voorhoeve PE
    Psychiatr Neurol Neurochir; 1968; 71(4):303-7. PubMed ID: 4306427
    [No Abstract]   [Full Text] [Related]  

  • 16. The physiological effects of ionic lanthanum on the insect blood-brain barrier.
    Thomas MV; Leslie RA
    Experientia; 1976 Jun; 32(6):720-1. PubMed ID: 950017
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Calcium and sodium ions as charge carriers in the action potential of an identified snail neurone.
    Standen NB
    J Physiol; 1975 Jul; 249(2):241-52. PubMed ID: 1177092
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Breaking the code: regulation of neuronal differentiation by spontaneous calcium transients.
    Gu X; Spitzer NC
    Dev Neurosci; 1997; 19(1):33-41. PubMed ID: 9078431
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of barium, lanthanum and gadolinium on endogenous chloride and potassium currents in Xenopus oocytes.
    Tokimasa T; North RA
    J Physiol; 1996 Nov; 496 ( Pt 3)(Pt 3):677-86. PubMed ID: 8930835
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Imaging and manipulating calcium transients in developing Xenopus spinal neurons.
    Spitzer NC; Borodinsky LN; Root CM
    Cold Spring Harb Protoc; 2013 Jul; 2013(7):653-64. PubMed ID: 23818661
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.