These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 12687615)

  • 1. Protein targets of 1,4-benzoquinone and 1,4-naphthoquinone in human bronchial epithelial cells.
    Lamé MW; Jones AD; Wilson DW; Segall HJ
    Proteomics; 2003 Apr; 3(4):479-95. PubMed ID: 12687615
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protein targets of monocrotaline pyrrole in pulmonary artery endothelial cells.
    Lamé MW; Jones AD; Wilson DW; Dunston SK; Segall HJ
    J Biol Chem; 2000 Sep; 275(37):29091-9. PubMed ID: 10875930
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanism of inhibition of the ATPase domain of human topoisomerase IIα by 1,4-benzoquinone, 1,2-naphthoquinone, 1,4-naphthoquinone, and 9,10-phenanthroquinone.
    Gurbani D; Kukshal V; Laubenthal J; Kumar A; Pandey A; Tripathi S; Arora A; Jain SK; Ramachandran R; Anderson D; Dhawan A
    Toxicol Sci; 2012 Apr; 126(2):372-90. PubMed ID: 22218491
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Benzoquinone inhibits the voltage-dependent induction of the mitochondrial permeability transition caused by redox-cycling naphthoquinones.
    Palmeira CM; Wallace KB
    Toxicol Appl Pharmacol; 1997 Apr; 143(2):338-47. PubMed ID: 9144450
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proteome changes of human bronchial epithelial cells in response to pro-inflammatory mediator leukotriene E4 and pro-remodelling factor TGF-beta1.
    Altraja S; Jaama J; Altraja A
    J Proteomics; 2010 Apr; 73(6):1230-40. PubMed ID: 20219718
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of the hepatic protein targets of reactive metabolites of acetaminophen in vivo in mice using two-dimensional gel electrophoresis and mass spectrometry.
    Qiu Y; Benet LZ; Burlingame AL
    J Biol Chem; 1998 Jul; 273(28):17940-53. PubMed ID: 9651401
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A method for detecting covalent modification of sensor proteins associated with 1,4-naphthoquinone-induced activation of electrophilic signal transduction pathways.
    Hirose R; Miura T; Sha R; Shinkai Y; Tanaka-Kagawa T; Kumagai Y
    J Toxicol Sci; 2012; 37(5):891-8. PubMed ID: 23037999
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of redox cycling versus arylation in quinone-induced mitochondrial dysfunction: a mechanistic approach in classifying reactive toxicants.
    Henry TR; Wallace KB
    SAR QSAR Environ Res; 1995; 4(2-3):97-108. PubMed ID: 8765905
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quinone-induced inhibition of urease: elucidation of its mechanisms by probing thiol groups of the enzyme.
    Zaborska W; Krajewska B; Kot M; Karcz W
    Bioorg Chem; 2007 Jun; 35(3):233-42. PubMed ID: 17169398
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Expressional pattern of chaperones in neuronal, glial, amnion, mesothelial, and bronchial epithelial cell lines.
    Myung JK; Krapfenbauer K; Weitzdoerfer R; Peyrl A; Fountoulakis M; Lubec G
    Mol Genet Metab; 2003 Dec; 80(4):444-50. PubMed ID: 14654358
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quinone-enhanced ascorbate reduction of nitric oxide: role of quinone redox potential.
    Alegria AE; Sanchez S; Quintana I
    Free Radic Res; 2004 Oct; 38(10):1107-12. PubMed ID: 15512799
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Peroxiredoxin 6 is a molecular target for 1,2-naphthoquinone, an atmospheric electrophile, in human pulmonary epithelial A549 cells.
    Takayama N; Iwamoto N; Sumi D; Shinkai Y; Tanaka-Kagawa T; Jinno H; Kumagai Y
    J Toxicol Sci; 2011; 36(6):817-21. PubMed ID: 22129745
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Initial response and cellular protection through the Keap1/Nrf2 system during the exposure of primary mouse hepatocytes to 1,2-naphthoquinone.
    Miura T; Shinkai Y; Jiang HY; Iwamoto N; Sumi D; Taguchi K; Yamamoto M; Jinno H; Tanaka-Kagawa T; Cho AK; Kumagai Y
    Chem Res Toxicol; 2011 Apr; 24(4):559-67. PubMed ID: 21384861
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chemical knockdown of protein-tyrosine phosphatase 1B by 1,2-naphthoquinone through covalent modification causes persistent transactivation of epidermal growth factor receptor.
    Iwamoto N; Sumi D; Ishii T; Uchida K; Cho AK; Froines JR; Kumagai Y
    J Biol Chem; 2007 Nov; 282(46):33396-33404. PubMed ID: 17878162
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proteome profiling reveals potential toxicity and detoxification pathways following exposure of BEAS-2B cells to engineered nanoparticle titanium dioxide.
    Ge Y; Bruno M; Wallace K; Winnik W; Prasad RY
    Proteomics; 2011 Jun; 11(12):2406-22. PubMed ID: 21595037
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Capture of Electrophilic Quinones in the Extracellular Space: Evidence for a Phase Zero Reaction.
    Shinkai Y; Onose Y; Akiyama M; Hirose R; Kumagai Y
    Chem Res Toxicol; 2023 Jan; 36(1):23-31. PubMed ID: 36525601
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hypothetical proteins with putative enzyme activity in human amnion, lymphocyte, bronchial epithelial and kidney cell lines.
    Afjehi-Sadat L; Krapfenbauer K; Slavc I; Fountoulakis M; Lubec G
    Biochim Biophys Acta; 2004 Jul; 1700(1):65-74. PubMed ID: 15210126
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of proteins from two-dimensional gel electrophoresis of human erythroleukemia cells using capillary high performance liquid chromatography/electrospray-ion trap-reflectron time-of-flight mass spectrometry with two-dimensional topographic map analysis of in-gel tryptic digest products.
    Chen Y; Jin X; Misek D; Hinderer R; Hanash SM; Lubman DM
    Rapid Commun Mass Spectrom; 1999; 13(19):1907-16. PubMed ID: 10487937
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Monocrotaline pyrrole targets proteins with and without cysteine residues in the cytosol and membranes of human pulmonary artery endothelial cells.
    Lamé MW; Jones AD; Wilson DW; Segall HJ
    Proteomics; 2005 Nov; 5(17):4398-413. PubMed ID: 16222722
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Discriminating redox cycling and arylation pathways of reactive chemical toxicity in trout hepatocytes.
    Schmieder PK; Tapper MA; Kolanczyk RC; Hammermeister DE; Sheedy BR; Denny JS
    Toxicol Sci; 2003 Mar; 72(1):66-76. PubMed ID: 12604835
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.