These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 12687654)

  • 1. Causal logistic models for non-compliance under randomized treatment with univariate binary response.
    Ten Have TR; Joffe M; Cary M
    Stat Med; 2003 Apr; 22(8):1255-83. PubMed ID: 12687654
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two-stage instrumental variable methods for estimating the causal odds ratio: analysis of bias.
    Cai B; Small DS; Have TR
    Stat Med; 2011 Jul; 30(15):1809-24. PubMed ID: 21495062
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Time dependent hazard ratio estimation using instrumental variables without conditioning on an omitted covariate.
    MacKenzie TA; Martinez-Camblor P; O'Malley AJ
    BMC Med Res Methodol; 2021 Mar; 21(1):56. PubMed ID: 33743583
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A readily available improvement over method of moments for intra-cluster correlation estimation in the context of cluster randomized trials and fitting a GEE-type marginal model for binary outcomes.
    Westgate PM
    Clin Trials; 2019 Feb; 16(1):41-51. PubMed ID: 30295512
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Estimating treatment effects in randomized clinical trials in the presence of non-compliance.
    Nagelkerke N; Fidler V; Bernsen R; Borgdorff M
    Stat Med; 2000 Jul; 19(14):1849-64. PubMed ID: 10867675
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Estimators and confidence intervals for the marginal odds ratio using logistic regression and propensity score stratification.
    Stampf S; Graf E; Schmoor C; Schumacher M
    Stat Med; 2010 Mar; 29(7-8):760-9. PubMed ID: 20213703
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Measuring and estimating treatment effect on dichotomous outcome of a population.
    Wang X; Jin Y; Yin L
    Stat Methods Med Res; 2016 Oct; 25(5):1779-1790. PubMed ID: 24004484
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bias in estimating the causal hazard ratio when using two-stage instrumental variable methods.
    Wan F; Small D; Bekelman JE; Mitra N
    Stat Med; 2015 Jun; 34(14):2235-65. PubMed ID: 25800789
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sensitivity analyses for unmeasured confounding assuming a marginal structural model for repeated measures.
    Brumback BA; Hernán MA; Haneuse SJ; Robins JM
    Stat Med; 2004 Mar; 23(5):749-67. PubMed ID: 14981673
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessing the effectiveness of antiretroviral adherence interventions. Using marginal structural models to replicate the findings of randomized controlled trials.
    Petersen ML; Wang Y; van der Laan MJ; Bangsberg DR
    J Acquir Immune Defic Syndr; 2006 Dec; 43 Suppl 1():S96-S103. PubMed ID: 17133209
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The alarming problems of confounding equivalence using logistic regression models in the perspective of causal diagrams.
    Yu Y; Li H; Sun X; Su P; Wang T; Liu Y; Yuan Z; Liu Y; Xue F
    BMC Med Res Methodol; 2017 Dec; 17(1):177. PubMed ID: 29281984
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estimation of marginal causal effects in the presence of confounding by cluster.
    Sjölander A
    Biostatistics; 2021 Jul; 22(3):598-612. PubMed ID: 31804668
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessing the impact of unmeasured confounding for binary outcomes using confounding functions.
    Kasza J; Wolfe R; Schuster T
    Int J Epidemiol; 2017 Aug; 46(4):1303-1311. PubMed ID: 28338913
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A weighting approach to causal effects and additive interaction in case-control studies: marginal structural linear odds models.
    VanderWeele TJ; Vansteelandt S
    Am J Epidemiol; 2011 Nov; 174(10):1197-203. PubMed ID: 22058231
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Performance of principal scores to estimate the marginal compliers causal effect of an intervention.
    Porcher R; Leyrat C; Baron G; Giraudeau B; Boutron I
    Stat Med; 2016 Feb; 35(5):752-67. PubMed ID: 26381261
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comparison of marginal odds ratio estimators.
    Loux TM; Drake C; Smith-Gagen J
    Stat Methods Med Res; 2017 Feb; 26(1):155-175. PubMed ID: 25006032
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Correcting for non-compliance of repeated binary outcomes in randomized clinical trials: randomized analysis approach.
    Matsuyama Y
    Stat Med; 2002 Mar; 21(5):675-87. PubMed ID: 11870809
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A general approach to evaluating the bias of 2-stage instrumental variable estimators.
    Wan F; Small D; Mitra N
    Stat Med; 2018 May; 37(12):1997-2015. PubMed ID: 29572890
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The impact of unmeasured within- and between-cluster confounding on the bias of effect estimatorsof a continuous exposure.
    Li Y; Lee Y; Port FK; Robinson BM
    Stat Methods Med Res; 2020 Aug; 29(8):2119-2139. PubMed ID: 31694489
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Estimating causal effects from a randomized clinical trial when noncompliance is measured with error.
    Boatman JA; Vock DM; Koopmeiners JS; Donny EC
    Biostatistics; 2018 Jan; 19(1):103-118. PubMed ID: 28605411
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.