These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 12687706)

  • 1. Time-lapse in vivo imaging of the morphological development of Xenopus optic tectal interneurons.
    Wu GY; Cline HT
    J Comp Neurol; 2003 May; 459(4):392-406. PubMed ID: 12687706
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rho GTPases regulate distinct aspects of dendritic arbor growth in Xenopus central neurons in vivo.
    Li Z; Van Aelst L; Cline HT
    Nat Neurosci; 2000 Mar; 3(3):217-25. PubMed ID: 10700252
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dendritic dynamics in vivo change during neuronal maturation.
    Wu GY; Zou DJ; Rajan I; Cline H
    J Neurosci; 1999 Jun; 19(11):4472-83. PubMed ID: 10341248
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glutamate receptor activity is required for normal development of tectal cell dendrites in vivo.
    Rajan I; Cline HT
    J Neurosci; 1998 Oct; 18(19):7836-46. PubMed ID: 9742152
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Presynaptic protein kinase C controls maturation and branch dynamics of developing retinotectal arbors: possible role in activity-driven sharpening.
    Schmidt JT; Fleming MR; Leu B
    J Neurobiol; 2004 Feb; 58(3):328-40. PubMed ID: 14750146
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vivo observations of timecourse and distribution of morphological dynamics in Xenopus retinotectal axon arbors.
    Witte S; Stier H; Cline HT
    J Neurobiol; 1996 Oct; 31(2):219-34. PubMed ID: 8885202
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DSCAM differentially modulates pre- and postsynaptic structural and functional central connectivity during visual system wiring.
    Santos RA; Fuertes AJC; Short G; Donohue KC; Shao H; Quintanilla J; Malakzadeh P; Cohen-Cory S
    Neural Dev; 2018 Sep; 13(1):22. PubMed ID: 30219101
    [TBL] [Abstract][Full Text] [Related]  

  • 8. NMDA receptor activity stabilizes presynaptic retinotectal axons and postsynaptic optic tectal cell dendrites in vivo.
    Rajan I; Witte S; Cline HT
    J Neurobiol; 1999 Feb; 38(3):357-68. PubMed ID: 10022578
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Social experience affects the development of dendritic spines and branches on tectal interneurons in the jewel fish.
    Coss RG; Globus A
    Dev Psychobiol; 1979 Jul; 12(4):347-58. PubMed ID: 456761
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neurexin-neuroligin cell adhesion complexes contribute to synaptotropic dendritogenesis via growth stabilization mechanisms in vivo.
    Chen SX; Tari PK; She K; Haas K
    Neuron; 2010 Sep; 67(6):967-83. PubMed ID: 20869594
    [TBL] [Abstract][Full Text] [Related]  

  • 11. AMPA receptors regulate experience-dependent dendritic arbor growth in vivo.
    Haas K; Li J; Cline HT
    Proc Natl Acad Sci U S A; 2006 Aug; 103(32):12127-31. PubMed ID: 16882725
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Distribution of synaptic vesicle proteins within single retinotectal axons of Xenopus tadpoles.
    Pinches EM; Cline HT
    J Neurobiol; 1998 Jun; 35(4):426-34. PubMed ID: 9624623
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neural activity regulates synaptic properties and dendritic structure in vivo through calcineurin/NFAT signaling.
    Schwartz N; Schohl A; Ruthazer ES
    Neuron; 2009 Jun; 62(5):655-69. PubMed ID: 19524525
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamics of process formation during differentiation of tectal neurons in embryonic zebrafish.
    Kaethner RJ; Stuermer CA
    J Neurobiol; 1997 Jun; 32(6):627-39. PubMed ID: 9183742
    [TBL] [Abstract][Full Text] [Related]  

  • 15. BDNF increases synapse density in dendrites of developing tectal neurons in vivo.
    Sanchez AL; Matthews BJ; Meynard MM; Hu B; Javed S; Cohen Cory S
    Development; 2006 Jul; 133(13):2477-86. PubMed ID: 16728478
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Homer proteins shape Xenopus optic tectal cell dendritic arbor development in vivo.
    Van Keuren-Jensen KR; Cline HT
    Dev Neurobiol; 2008 Sep; 68(11):1315-24. PubMed ID: 18636533
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Short-term juvenile crowding arrests the developmental formation of dendritic spines on tectal interneurons in jewel fish.
    Burgess JW; Coss RG
    Dev Psychobiol; 1981 Jul; 14(4):389-96. PubMed ID: 7250527
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of tetraploidy on dendritic branching in neurons and glial cells of the frog, Xenopus laevis.
    Szaro BG; Tompkins R
    J Comp Neurol; 1987 Apr; 258(2):304-16. PubMed ID: 3584543
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In Vivo Time-Lapse Imaging and Analysis of Dendritic Structural Plasticity in
    He HY; Lin CY; Cline HT
    Cold Spring Harb Protoc; 2022 Jan; 2022(1):pdb.prot106781. PubMed ID: 33790043
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dendritic initiation and propagation of spikes and spike bursts in a multimodal sensory interneuron: the crustacean parasol cell.
    Mellon D
    J Neurophysiol; 2003 Oct; 90(4):2465-77. PubMed ID: 12789014
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.