These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 12688465)

  • 21. Pre-fermentation of a low-strength meat-processing wastewater in an upflow sludge blanket reactor.
    Ros M; Vrtovsek J
    Water Environ Res; 2001; 73(2):142-5. PubMed ID: 11563373
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Microbiology of a biological contactor for winery wastewater treatment.
    Malandra L; Wolfaardt G; Zietsman A; Viljoen-Bloom M
    Water Res; 2003 Oct; 37(17):4125-34. PubMed ID: 12946894
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Treatment of hydrocarbon-rich wastewater using oil degrading bacteria and phototrophic microorganisms in rotating biological contactor: effect of N:P ratio.
    Chavan A; Mukherji S
    J Hazard Mater; 2008 Jun; 154(1-3):63-72. PubMed ID: 17983704
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Olive-mill wastewaters: a promising substrate for microbial lipase production.
    D'Annibale A; Sermanni GG; Federici F; Petruccioli M
    Bioresour Technol; 2006 Oct; 97(15):1828-33. PubMed ID: 16236495
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Treatment of slaughterhouse wastewater using an activated sludge/contact aeration process.
    Chen CK; Lo SL
    Water Sci Technol; 2003; 47(12):285-92. PubMed ID: 12926700
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The treatability study of high strength pet food wastewater: a continuous flow aerobic system performance evaluation.
    Liu LV; Nakhla G; Bassi A
    Environ Technol; 2004 May; 25(5):577-88. PubMed ID: 15242233
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Biodegradation of olive mill wastewater by Trichosporon cutaneum and Geotrichum candidum.
    Sollner Dragičević TL; Zanoški Hren M; Gmajnić M; Pelko S; Kungulovski D; Kungulovski I; Cvek D; Frece J; Markov K; Delaš F
    Arh Hig Rada Toksikol; 2010 Dec; 61(4):399-405. PubMed ID: 21183431
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Isolation and characterization of phenol-degrading yeasts from an oil refinery wastewater in Brazil.
    Rocha LL; de Aguiar Cordeiro R; Cavalcante RM; do Nascimento RF; Martins SC; Santaella ST; Melo VM
    Mycopathologia; 2007 Oct; 164(4):183-8. PubMed ID: 17674140
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Modelling of an oil refinery wastewater treatment plant.
    Pinzón Pardo AL; Brdjanovic D; Moussa MS; López-Vázquez CM; Meijer SC; Van Straten HH; Janssen AJ; Amy G; Van Loosdrecht MC
    Environ Technol; 2007 Nov; 28(11):1273-84. PubMed ID: 18290537
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Pretreatment of synthetic dairy wastewater using the sophorolipid-producing yeast Candida bombicola.
    Daverey A; Pakshirajan K
    Appl Biochem Biotechnol; 2011 Mar; 163(6):720-8. PubMed ID: 20821070
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Biological treatment of nitrogen-rich refinery wastewater by partial nitritation (SHARON) process.
    Milia S; Cappai G; Perra M; Carucci A
    Environ Technol; 2012; 33(13-15):1477-83. PubMed ID: 22988604
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Evaluation of an anaerobic/aerobic system for carbon and nitrogen removal in slaughterhouse wastewater.
    Núñez LA; Martínez B
    Water Sci Technol; 2001; 44(4):271-7. PubMed ID: 11575093
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Influence of pH and natural organic matter on zinc biosorption in a model lignocellulosic biofuel biorefinery effluent.
    Palumbo AJ; Daughney CJ; Slade AH; Glover CN
    Bioresour Technol; 2013 Oct; 146():169-175. PubMed ID: 23933024
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Adding value to the oil cake as a waste from oil processing industry: production of lipase and protease by Candida utilis in solid state fermentation.
    Moftah OA; Grbavčić S; Zuža M; Luković N; Bezbradica D; Knežević-Jugović Z
    Appl Biochem Biotechnol; 2012 Jan; 166(2):348-64. PubMed ID: 22081325
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Olive mill wastewater treatment: an experimental study.
    Bettazzi E; Morelli M; Caffaz S; Caretti C; Azzari E; Lubello C
    Water Sci Technol; 2006; 54(8):17-25. PubMed ID: 17163009
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Using ammonium-tolerant yeast isolates: Candida halophila and Rhodotorula glutinis to treat high strength fermentative wastewater.
    Yang Q; Yang M; Hei L; Zheng S
    Environ Technol; 2003 Mar; 24(3):383-90. PubMed ID: 12703863
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Treatability study of a seafood-processing wastewater.
    Mines RO; Robertson RR
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2003 Sep; 38(9):1927-37. PubMed ID: 12940493
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Feasibility study to upgrade a textile wastewater treatment plant by a hollow fibre membrane bioreactor for effluent reuse.
    Malpei F; Bonomo L; Rozzi A
    Water Sci Technol; 2003; 47(10):33-9. PubMed ID: 12862214
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Laboratory-scale continuous treatment of monosodium glutamate manufacturing wastewater using yeast].
    Hei L; Yang Q; Yang M; Zhang S
    Huan Jing Ke Xue; 2002 Jul; 23(4):62-6. PubMed ID: 12371105
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Survey of dissolved air flotation system efficiency for reduce of pollution of vegetable oil industry wastewater.
    Keramati H; Alidadi H; Parvaresh AR; Movahedian H; Mahvi AH
    Pak J Biol Sci; 2008 Oct; 11(19):2364-6. PubMed ID: 19137873
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.