These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 12688909)

  • 1. Pattern of reaction diffusion fronts in laminar flows.
    Leconte M; Martin J; Rakotomalala N; Salin D
    Phys Rev Lett; 2003 Mar; 90(12):128302. PubMed ID: 12688909
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measurement of the temperature profile of an exothermic autocatalytic reaction front.
    Martin J; Rakotomalala N; Talon L; Salin D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Nov; 80(5 Pt 2):055101. PubMed ID: 20365030
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Numerical simulations of a buoyant autocatalytic reaction front in tilted Hele-Shaw cells.
    Jarrige N; Bou Malham I; Martin J; Rakotomalala N; Salin D; Talon L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jun; 81(6 Pt 2):066311. PubMed ID: 20866526
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lock-exchange experiments with an autocatalytic reaction front.
    Bou Malham I; Jarrige N; Martin J; Rakotomalala N; Talon L; Salin D
    J Chem Phys; 2010 Dec; 133(24):244505. PubMed ID: 21198000
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Buoyancy-driven instability of an autocatalytic reaction front in a Hele-Shaw cell.
    Martin J; Rakotomalala N; Salin D; Böckmann M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 May; 65(5 Pt 1):051605. PubMed ID: 12059568
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CHEMO-hydrodynamic coupling between forced advection in porous media and self-sustained chemical waves.
    Atis S; Saha S; Auradou H; Martin J; Rakotomalala N; Talon L; Salin D
    Chaos; 2012 Sep; 22(3):037108. PubMed ID: 23020499
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mixing and reaction fronts in laminar flows.
    Leconte M; Martin J; Rakotomalala N; Salin D; Yortsos YC
    J Chem Phys; 2004 Apr; 120(16):7314-21. PubMed ID: 15267641
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nernst-Planck analysis of propagating reaction-diffusion fronts in the aqueous iodate-arsenous acid system.
    Mercer SM; Banks JM; Leaist DG
    Phys Chem Chem Phys; 2007 Oct; 9(40):5457-68. PubMed ID: 17925972
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Buoyancy-driven convection around chemical fronts traveling in covered horizontal solution layers.
    Rongy L; Goyal N; Meiburg E; De Wit A
    J Chem Phys; 2007 Sep; 127(11):114710. PubMed ID: 17887873
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Front propagation in a laminar cellular flow: shapes, velocities, and least time criterion.
    Pocheau A; Harambat F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Mar; 77(3 Pt 2):036304. PubMed ID: 18517508
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The heads and tails of buoyant autocatalytic balls.
    Rogers MC; Morris SW
    Chaos; 2012 Sep; 22(3):037110. PubMed ID: 23020501
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The dependence of scaling law on stoichiometry for horizontally propagating vertical chemical fronts.
    Pópity-Tóth É; Horváth D; Tóth Á
    J Chem Phys; 2011 Aug; 135(7):074506. PubMed ID: 21861575
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rayleigh-Taylor instabilities in reaction-diffusion systems inside Hele-Shaw cell modified by the action of temperature.
    García Casado G; Tofaletti L; Müller D; D'Onofrio A
    J Chem Phys; 2007 Mar; 126(11):114502. PubMed ID: 17381215
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dispersion relations for the convective instability of an acidity front in Hele-Shaw cells.
    Vasquez DA; De Wit A
    J Chem Phys; 2004 Jul; 121(2):935-41. PubMed ID: 15260625
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interaction between buoyancy and diffusion-driven instabilities of propagating autocatalytic reaction fronts. II. Nonlinear simulations.
    D'Hernoncourt J; Merkin JH; De Wit A
    J Chem Phys; 2009 Mar; 130(11):114503. PubMed ID: 19317541
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flow-field development during finger splitting at an exothermic chemical reaction front.
    Sebestíková L; D'Hernoncourt J; Hauser MJ; Müller SC; De Wit A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Feb; 75(2 Pt 2):026309. PubMed ID: 17358424
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Convection induced by thermal gradients on thin reaction fronts.
    Ruelas Paredes DRA; Vasquez DA
    Phys Rev E; 2017 Sep; 96(3-1):033116. PubMed ID: 29346926
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accurate eikonal-curvature relation for wave fronts in locally anisotropic reaction-diffusion systems.
    Dierckx H; Bernus O; Verschelde H
    Phys Rev Lett; 2011 Sep; 107(10):108101. PubMed ID: 21981533
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Front propagation in laminar flows.
    Abel M; Celani A; Vergni D; Vulpiani A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Oct; 64(4 Pt 2):046307. PubMed ID: 11690146
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Front tracking velocimetry in advection-reaction-diffusion systems.
    Nevins TD; Kelley DH
    Chaos; 2018 Apr; 28(4):043122. PubMed ID: 31906630
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.