These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
109 related articles for article (PubMed ID: 12688972)
1. Destabilization of Turing structures by electric fields. Schmidt B; De Kepper P; Müller SC Phys Rev Lett; 2003 Mar; 90(11):118302. PubMed ID: 12688972 [TBL] [Abstract][Full Text] [Related]
2. Multifold Increases in Turing Pattern Wavelength in the Chlorine Dioxide-Iodine-Malonic Acid Reaction-Diffusion System. Gaskins DK; Pruc EE; Epstein IR; Dolnik M Phys Rev Lett; 2016 Jul; 117(5):056001. PubMed ID: 27517779 [TBL] [Abstract][Full Text] [Related]
3. Target Turing patterns and growth dynamics in the chlorine dioxide-iodine-malonic acid reaction. Preska Steinberg A; Epstein IR; Dolnik M J Phys Chem A; 2014 Apr; 118(13):2393-400. PubMed ID: 24601764 [TBL] [Abstract][Full Text] [Related]
4. Dynamic mechanism of photochemical induction of turing superlattices in the chlorine dioxide-iodine-malonic acid reaction-diffusion system. Berenstein I; Yang L; Dolnik M; Zhabotinsky AM; Epstein IR J Phys Chem A; 2005 Jun; 109(24):5382-7. PubMed ID: 16839063 [TBL] [Abstract][Full Text] [Related]
5. Deciphering electric field induced spatial pattern formation in the photosensitive chlorine-dioxide iodine malonic acid reaction and the Brusselator reaction-diffusion systems. Maiti T; Ghosh P J Chem Phys; 2022 Dec; 157(22):224907. PubMed ID: 36546813 [TBL] [Abstract][Full Text] [Related]
6. Locking of Turing patterns in the chlorine dioxide-iodine-malonic acid reaction with one-dimensional spatial periodic forcing. Dolnik M; Bánsági T; Ansari S; Valent I; Epstein IR Phys Chem Chem Phys; 2011 Jul; 13(27):12578-83. PubMed ID: 21666931 [TBL] [Abstract][Full Text] [Related]
7. Spatial periodic forcing of Turing structures. Dolnik M; Berenstein I; Zhabotinsky AM; Epstein IR Phys Rev Lett; 2001 Dec; 87(23):238301. PubMed ID: 11736479 [TBL] [Abstract][Full Text] [Related]
8. Control of the Hopf-Turing transition by time-delayed global feedback in a reaction-diffusion system. Ghosh P Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jul; 84(1 Pt 2):016222. PubMed ID: 21867288 [TBL] [Abstract][Full Text] [Related]
9. Turing patterns in the chlorine dioxide-iodine-malonic acid reaction with square spatial periodic forcing. Feldman D; Nagao R; Bánsági T; Epstein IR; Dolnik M Phys Chem Chem Phys; 2012 May; 14(18):6577-83. PubMed ID: 22456449 [TBL] [Abstract][Full Text] [Related]
10. Experimental evidence of localized oscillations in the photosensitive chlorine dioxide-iodine-malonic acid reaction. Míguez DG; Alonso S; Muñuzuri AP; Sagués F Phys Rev Lett; 2006 Oct; 97(17):178301. PubMed ID: 17155511 [TBL] [Abstract][Full Text] [Related]
11. Transverse instabilities in chemical Turing patterns of stripes. Peña B; Pérez-García C; Sanz-Anchelergues A; Míguez DG; Muñuzuri AP Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Nov; 68(5 Pt 2):056206. PubMed ID: 14682870 [TBL] [Abstract][Full Text] [Related]
12. Unravelling diverse spatiotemporal orders in chlorine dioxide-iodine-malonic acid reaction-diffusion system through circularly polarized electric field and photo-illumination. Maiti T; Ghosh P J Chem Phys; 2023 Nov; 159(17):. PubMed ID: 37909457 [TBL] [Abstract][Full Text] [Related]
13. Waving patterns: a general transition from stationary to moving forced Turing structures. Berenstein I; Muñuzuri AP Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Sep; 74(3 Pt 2):036202. PubMed ID: 17025724 [TBL] [Abstract][Full Text] [Related]
14. Forcing of Turing patterns in the chlorine dioxide-iodine-malonic acid reaction with strong visible light. Nagao R; Epstein IR; Dolnik M J Phys Chem A; 2013 Sep; 117(38):9120-6. PubMed ID: 23991763 [TBL] [Abstract][Full Text] [Related]
15. Turing patterns, spatial bistability, and front interactions in the [ClO2, I2, I-, CH2(COOH)2] reaction. Strier DE; De Kepper P; Boissonade J J Phys Chem A; 2005 Feb; 109(7):1357-63. PubMed ID: 16833452 [TBL] [Abstract][Full Text] [Related]
16. Designing Stationary Reaction-Diffusion Patterns in pH Self-Activated Systems. Horváth J; Szalai I; De Kepper P Acc Chem Res; 2018 Dec; 51(12):3183-3190. PubMed ID: 30412377 [TBL] [Abstract][Full Text] [Related]
17. Why Turing mechanism is an obstacle to stationary periodic patterns in bounded reaction-diffusion media with advection. Yochelis A; Sheintuch M Phys Chem Chem Phys; 2010 Apr; 12(16):3957-60. PubMed ID: 20379487 [TBL] [Abstract][Full Text] [Related]
18. Experimental steady pattern formation in reaction-diffusion-advection systems. Míguez DG; Satnoianu RA; Muñuzuri AP Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Feb; 73(2 Pt 2):025201. PubMed ID: 16605385 [TBL] [Abstract][Full Text] [Related]
19. Transition from Turing stripe patterns to hexagonal patterns induced by polarized electric fields. Chen WQ; Zhang H; Ying HP; Li BW; Chen JX J Chem Phys; 2007 Oct; 127(15):154708. PubMed ID: 17949192 [TBL] [Abstract][Full Text] [Related]
20. Noise-reversed stability of Turing patterns versus Hopf oscillations near codimension-two conditions. Alonso S; Sagués F Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Sep; 80(3 Pt 2):035203. PubMed ID: 19905167 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]