These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 12689071)

  • 1. Influence of molecular structure on the dynamics of supercooled van der Waals liquids.
    Casalini R; Paluch M; Roland CM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Mar; 67(3 Pt 1):031505. PubMed ID: 12689071
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A comparison of relaxation processes in structurally related van der Waals glass formers: the role of internal degrees of freedom.
    Kahle S; Gapinski J; Hinze G; Patkowski A; Meier G
    J Chem Phys; 2005 Feb; 122(7):074506. PubMed ID: 15743253
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Free volume from positron lifetime and pressure-volume-temperature experiments in relation to structural relaxation of van der Waals molecular glass-forming liquids.
    Dlubek G; Shaikh MQ; Rätzke K; Paluch M; Faupel F
    J Phys Condens Matter; 2010 Jun; 22(23):235104. PubMed ID: 21393763
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Isotropic Brillouin spectra of liquids having an internal degree of freedom.
    Patkowski A; Gapinski J; Meier G; Kriegs H
    J Chem Phys; 2007 Jan; 126(1):014508. PubMed ID: 17212501
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Correlation between nonexponential relaxation and non-Arrhenius behavior under conditions of high compression.
    Gapiński J; Paluch M; Patkowski A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Jul; 66(1 Pt 1):011501. PubMed ID: 12241364
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Temperature-Volume Entropic Model for Viscosities and Structural Relaxation Times of Glass Formers.
    Masiewicz E; Grzybowski A; Sokolov AP; Paluch M
    J Phys Chem Lett; 2012 Sep; 3(18):2643-8. PubMed ID: 26295885
    [TBL] [Abstract][Full Text] [Related]  

  • 7.  Dielectric relaxation dynamics in glass-forming mixtures of propanediol isomers.
    Wang LM; Zhao Y; Sun M; Liu R; Tian Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Dec; 82(6 Pt 1):062502. PubMed ID: 21230694
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Primary and secondary relaxations in supercooled eugenol and isoeugenol at ambient and elevated pressures: dependence on chemical microstructure.
    Kaminska E; Kaminski K; Paluch M; Ngai KL
    J Chem Phys; 2006 Apr; 124(16):164511. PubMed ID: 16674150
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular dynamics at ambient and elevated pressure of the amorphous pharmaceutical: nonivamide (pelargonic acid vanillylamide).
    Wojnarowska Z; Hawelek L; Paluch M; Sawicki W; Ngai KL
    J Chem Phys; 2011 Jan; 134(4):044517. PubMed ID: 21280758
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Communication: High pressure specific heat spectroscopy reveals simple relaxation behavior of glass forming molecular liquid.
    Roed LA; Niss K; Jakobsen B
    J Chem Phys; 2015 Dec; 143(22):221101. PubMed ID: 26671349
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermodynamic scaling of the viscosity of van der Waals, H-bonded, and ionic liquids.
    Roland CM; Bair S; Casalini R
    J Chem Phys; 2006 Sep; 125(12):124508. PubMed ID: 17014192
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glassy dynamics under superhigh pressure.
    Pronin AA; Kondrin MV; Lyapin AG; Brazhkin VV; Volkov AA; Lunkenheimer P; Loidl A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Apr; 81(4 Pt 1):041503. PubMed ID: 20481727
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular mobility of amorphous S-flurbiprofen: a dielectric relaxation spectroscopy approach.
    Rodrigues AC; Viciosa MT; Danède F; Affouard F; Correia NT
    Mol Pharm; 2014 Jan; 11(1):112-30. PubMed ID: 24215236
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High pressure dielectric studies on the structural and orientational glass.
    Kaminska E; Tarnacka M; Jurkiewicz K; Kaminski K; Paluch M
    J Chem Phys; 2016 Feb; 144(5):054503. PubMed ID: 26851927
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coupling of Caged Molecule Dynamics to JG β-Relaxation III: van der Waals Glasses.
    Ngai KL; Capaccioli S; Prevosto D; Wang LM
    J Phys Chem B; 2015 Sep; 119(38):12519-25. PubMed ID: 26340473
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cohen-Grest model for the dynamics of supercooled liquids.
    Paluch M; Casalini R; Roland CM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Feb; 67(2 Pt 1):021508. PubMed ID: 12636685
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aging of the Johari-Goldstein relaxation in the glass-forming liquids sorbitol and xylitol.
    Yardimci H; Leheny RL
    J Chem Phys; 2006 Jun; 124(21):214503. PubMed ID: 16774419
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The protein "glass" transition and the role of the solvent.
    Ngai KL; Capaccioli S; Shinyashiki N
    J Phys Chem B; 2008 Mar; 112(12):3826-32. PubMed ID: 18318525
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamics in supercooled ionic organic liquids and mode coupling theory analysis.
    Li J; Wang I; Fruchey K; Fayer MD
    J Phys Chem A; 2006 Sep; 110(35):10384-91. PubMed ID: 16942043
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative dielectric studies on two hydrogen-bonded and van der Waals liquids.
    Kaminski K; Wlodarczyk P; Hawelek L; Adrjanowicz K; Wojnarowska Z; Paluch M; Kaminska E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jun; 83(6 Pt 1):061506. PubMed ID: 21797371
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.