These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
92 related articles for article (PubMed ID: 12689095)
21. Effects of knot type in the folding of topologically complex lattice proteins. Soler MA; Nunes A; Faísca PF J Chem Phys; 2014 Jul; 141(2):025101. PubMed ID: 25028045 [TBL] [Abstract][Full Text] [Related]
22. Is protein unfolding the reverse of protein folding? A lattice simulation analysis. Dinner AR; Karplus M J Mol Biol; 1999 Sep; 292(2):403-19. PubMed ID: 10493884 [TBL] [Abstract][Full Text] [Related]
23. Modeling two-state cooperativity in protein folding. Fan K; Wang J; Wang W Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Oct; 64(4 Pt 1):041907. PubMed ID: 11690052 [TBL] [Abstract][Full Text] [Related]
24. How does a protein fold? Sali A; Shakhnovich E; Karplus M Nature; 1994 May; 369(6477):248-51. PubMed ID: 7710478 [TBL] [Abstract][Full Text] [Related]
25. Difference between "proteinlike" and "nonproteinlike" heteropolymers. Chen H; Zhou X; Ou-Yang ZC Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Mar; 63(3 Pt 1):031913. PubMed ID: 11308684 [TBL] [Abstract][Full Text] [Related]
26. Temperature effects on the nucleation mechanism of protein folding and on the barrierless thermal denaturation of a native protein. Djikaev YS; Ruckenstein E Phys Chem Chem Phys; 2008 Nov; 10(41):6281-300. PubMed ID: 18936853 [TBL] [Abstract][Full Text] [Related]
28. A protein engineering analysis of the transition state for protein folding: simulation in the lattice model. Gutin AM; Abkevich VI; Shakhnovich EI Fold Des; 1998; 3(3):183-94. PubMed ID: 9562547 [TBL] [Abstract][Full Text] [Related]
29. Globular-disorder transition in proteins: a compromise between hydrophobic and electrostatic interactions? Baruah A; Biswas P Phys Chem Chem Phys; 2016 Aug; 18(33):23207-14. PubMed ID: 27498593 [TBL] [Abstract][Full Text] [Related]
30. Monte Carlo simulation of protein folding in the presence of residue-specific binding sites. Rossinsky E; Srebnik S Biopolymers; 2005 Dec; 79(5):259-68. PubMed ID: 16134169 [TBL] [Abstract][Full Text] [Related]
31. Significance of conformational biases in Monte Carlo simulations of protein folding: lessons from Metropolis-Hastings approach. Przytycka T Proteins; 2004 Nov; 57(2):338-44. PubMed ID: 15340921 [TBL] [Abstract][Full Text] [Related]
32. Entropy reduction effect imposed by hydrogen bond formation on protein folding cooperativity: evidence from a hydrophobic minimalist model. Barbosa MA; Garcia LG; Pereira de Araújo AF Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Nov; 72(5 Pt 1):051903. PubMed ID: 16383641 [TBL] [Abstract][Full Text] [Related]
33. Pathways to folding, nucleation events, and native geometry. Travasso RD; Telo da Gama MM; Faísca PF J Chem Phys; 2007 Oct; 127(14):145106. PubMed ID: 17935450 [TBL] [Abstract][Full Text] [Related]
34. Thermodynamic stability and kinetic foldability of a lattice protein model. Li J; Wang J; Zhang J; Wang W J Chem Phys; 2004 Apr; 120(13):6274-87. PubMed ID: 15267515 [TBL] [Abstract][Full Text] [Related]
35. Folding pathway dependence on energetic frustration and interaction heterogeneity for a three-dimensional hydrophobic protein model. Garcia LG; Araújo AF Proteins; 2006 Jan; 62(1):46-63. PubMed ID: 16292745 [TBL] [Abstract][Full Text] [Related]
36. Computer modeling and folding of four-helix bundles. Rey A; Skolnick J Proteins; 1993 May; 16(1):8-28. PubMed ID: 8497487 [TBL] [Abstract][Full Text] [Related]
37. Designability of protein structures: a lattice-model study using the Miyazawa-Jernigan matrix. Li H; Tang C; Wingreen NS Proteins; 2002 Nov; 49(3):403-12. PubMed ID: 12360530 [TBL] [Abstract][Full Text] [Related]
38. Lattice models for proteins reveal multiple folding nuclei for nucleation-collapse mechanism. Klimov DK; Thirumalai D J Mol Biol; 1998 Sep; 282(2):471-92. PubMed ID: 9735420 [TBL] [Abstract][Full Text] [Related]