These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 12689110)
1. Analysis of globally connected active rotators with excitatory and inhibitory connections using the Fokker-Planck equation. Kanamaru T; Sekine M Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Mar; 67(3 Pt 1):031916. PubMed ID: 12689110 [TBL] [Abstract][Full Text] [Related]
2. An analysis of globally connected active rotators with excitatory and inhibitory connections having different time constants using the nonlinear Fokker-Planck equations. Kanamaru T; Sekine M IEEE Trans Neural Netw; 2004 Sep; 15(5):1009-17. PubMed ID: 15484878 [TBL] [Abstract][Full Text] [Related]
3. Collective phase description of globally coupled excitable elements. Kawamura Y; Nakao H; Kuramoto Y Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Oct; 84(4 Pt 2):046211. PubMed ID: 22181249 [TBL] [Abstract][Full Text] [Related]
4. How accurate are the nonlinear chemical Fokker-Planck and chemical Langevin equations? Grima R; Thomas P; Straube AV J Chem Phys; 2011 Aug; 135(8):084103. PubMed ID: 21895155 [TBL] [Abstract][Full Text] [Related]
5. Stability analysis of mean-field-type nonlinear Fokker-Planck equations associated with a generalized entropy and its application to the self-gravitating system. Shiino M Phys Rev E Stat Nonlin Soft Matter Phys; 2003 May; 67(5 Pt 2):056118. PubMed ID: 12786231 [TBL] [Abstract][Full Text] [Related]
6. Noise-induced dynamical regimes in a system of globally coupled excitable units. Klinshov VV; Kirillov SY; Nekorkin VI; Wolfrum M Chaos; 2021 Aug; 31(8):083103. PubMed ID: 34470239 [TBL] [Abstract][Full Text] [Related]
7. Consequences of the H theorem from nonlinear Fokker-Planck equations. Schwämmle V; Nobre FD; Curado EM Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Oct; 76(4 Pt 1):041123. PubMed ID: 17994952 [TBL] [Abstract][Full Text] [Related]
8. Fokker-Planck perspective on stochastic delay systems: exact solutions and data analysis of biological systems. Frank TD; Beek PJ; Friedrich R Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Aug; 68(2 Pt 1):021912. PubMed ID: 14525011 [TBL] [Abstract][Full Text] [Related]
9. Similarity solutions of nonlinear diffusion problems related to mathematical hydraulics and the Fokker-Planck equation. Daly E; Porporato A Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Nov; 70(5 Pt 2):056303. PubMed ID: 15600749 [TBL] [Abstract][Full Text] [Related]
10. Noisy FitzHugh-Nagumo model: from single elements to globally coupled networks. Acebrón JA; Bulsara AR; Rappel WJ Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Feb; 69(2 Pt 2):026202. PubMed ID: 14995543 [TBL] [Abstract][Full Text] [Related]
11. Solution of Fokker-Planck equation for a broad class of drift and diffusion coefficients. Fa KS Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jul; 84(1 Pt 1):012102. PubMed ID: 21867236 [TBL] [Abstract][Full Text] [Related]
12. Fokker-Planck equation with arbitrary dc and ac fields: continued fraction method. Lee CK; Gong J Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jul; 84(1 Pt 1):011104. PubMed ID: 21867110 [TBL] [Abstract][Full Text] [Related]
13. Entropy production and nonlinear Fokker-Planck equations. Casas GA; Nobre FD; Curado EM Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Dec; 86(6 Pt 1):061136. PubMed ID: 23367922 [TBL] [Abstract][Full Text] [Related]
14. Probability distributions and associated nonlinear Fokker-Planck equation for the two-index entropic form S(q,δ). Ribeiro MS; Nobre FD; Tsallis C Phys Rev E Stat Nonlin Soft Matter Phys; 2014 May; 89(5):052135. PubMed ID: 25353767 [TBL] [Abstract][Full Text] [Related]
15. Fokker-Planck equation in a wedge domain: anomalous diffusion and survival probability. Lenzi EK; Evangelista LR; Lenzi MK; da Silva LR Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Aug; 80(2 Pt 1):021131. PubMed ID: 19792101 [TBL] [Abstract][Full Text] [Related]
16. Colored-noise Fokker-Planck equation for the shear-induced self-diffusion process of non-Brownian particles. Lukassen LJ; Oberlack M Phys Rev E Stat Nonlin Soft Matter Phys; 2014 May; 89(5):052145. PubMed ID: 25353777 [TBL] [Abstract][Full Text] [Related]
17. Propagator for the Fokker-Planck equation with an arbitrary diffusion coefficient. Lee C; Zhu KD; Chen JG Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Nov; 88(5):054103. PubMed ID: 24329387 [TBL] [Abstract][Full Text] [Related]
18. Curl forces and the nonlinear Fokker-Planck equation. Wedemann RS; Plastino AR; Tsallis C Phys Rev E; 2016 Dec; 94(6-1):062105. PubMed ID: 28085349 [TBL] [Abstract][Full Text] [Related]