These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 12689175)

  • 1. Theoretical analysis of the focusing of acoustic waves by two-dimensional sonic crystals.
    Gupta BC; Ye Z
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Mar; 67(3 Pt 2):036603. PubMed ID: 12689175
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Flow acoustics in periodic structures.
    Willatzen M; Yan Voon LC
    Ultrasonics; 2005 Oct; 43(9):756-63. PubMed ID: 15961133
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comment on "Theory of tailoring sonic devices: diffraction dominates over refraction".
    Håkansson A; Sánchez-Dehesa J; Cervera F; Meseguer F; Sanchis L; Llinares J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jan; 71(1 Pt 2):018601; discussion 018602. PubMed ID: 15697781
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Refraction behavior investigation and focusing control of phononic crystals under external magnetic fields.
    Xue X; Li P; Jin F
    Ultrasonics; 2019 Jul; 96():261-266. PubMed ID: 30718037
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nonlinear dynamics of large-amplitude dust acoustic shocks and solitary pulses in dusty plasmas.
    Shukla PK; Eliasson B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Oct; 86(4 Pt 2):046402. PubMed ID: 23214695
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Negative birefraction of acoustic waves in a sonic crystal.
    Lu MH; Zhang C; Feng L; Zhao J; Chen YF; Mao YW; Zi J; Zhu YY; Zhu SN; Ming NB
    Nat Mater; 2007 Oct; 6(10):744-8. PubMed ID: 17721539
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two-dimensional sonic crystals with Helmholtz resonators.
    Hu X; Chan CT; Zi J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 May; 71(5 Pt 2):055601. PubMed ID: 16089593
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Disorder effect on the focus image of sonic crystals in air.
    Li S; George TF; Chen LS; Sun X; Kuo CH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 May; 73(5 Pt 2):056615. PubMed ID: 16803065
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phononic crystal with low filling fraction and absolute acoustic band gap in the audible frequency range: a theoretical and experimental study.
    Vasseur JO; Deymier PA; Khelif A; Lambin P; Djafari-Rouhani B; Akjouj A; Dobrzynski L; Fettouhi N; Zemmouri J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 May; 65(5 Pt 2):056608. PubMed ID: 12059732
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Time reversal focusing in the audible range using a tunable sonic crystal.
    Gomez VS; Spiousas I; Eguia MC
    J Acoust Soc Am; 2021 Jun; 149(6):4024. PubMed ID: 34241489
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of laser generated acoustic waves in the two-dimensional transient response of cylinders.
    Pan Y; Rossignol C; Audoin B
    J Acoust Soc Am; 2005 Jun; 117(6):3600-8. PubMed ID: 16018463
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modelling and simulation of acoustic wave propagation in locally resonant sonic materials.
    Hirsekorn M; Delsanto PP; Batra NK; Matic P
    Ultrasonics; 2004 Apr; 42(1-9):231-5. PubMed ID: 15047290
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reflectance properties of two-dimensional sonic band-gap crystals.
    Sanchis L; Cervera F; Sánchez-Dehesa J; Sánchez-Pérez JV; Rubio C; Martínez-Sala R
    J Acoust Soc Am; 2001 Jun; 109(6):2598-605. PubMed ID: 11425100
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Extremal transmission and beating effect of acoustic waves in two-dimensional sonic crystals.
    Zhang X; Liu Z
    Phys Rev Lett; 2008 Dec; 101(26):264303. PubMed ID: 19437645
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Theoretical analysis of acoustic stop bands in two-dimensional periodic scattering arrays.
    Chen YY; Ye Z
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Sep; 64(3 Pt 2):036616. PubMed ID: 11580471
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Focusing of longitudinal ultrasonic waves in air with an aperiodic flat lens.
    Welter JT; Sathish S; Christensen DE; Brodrick PG; Heebl JD; Cherry MR
    J Acoust Soc Am; 2011 Nov; 130(5):2789-96. PubMed ID: 22087907
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Observations of a structure-forming instability in a dc-glow-discharge dusty plasma.
    Heinrich JR; Kim SH; Merlino RL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Aug; 84(2 Pt 2):026403. PubMed ID: 21929116
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stopping of acoustic waves by sonic polymer-fluid composites.
    Lambin P; Khelif A; Vasseur JO; Dobrzynski L; Djafari-Rouhani B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jun; 63(6 Pt 2):066605. PubMed ID: 11415240
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experimental demonstrations in audible frequency range of band gap tunability and negative refraction in two-dimensional sonic crystal.
    Pichard H; Richoux O; Groby JP
    J Acoust Soc Am; 2012 Oct; 132(4):2816-22. PubMed ID: 23039547
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nonlinear focusing of acoustic shock waves at a caustic cusp.
    Marchiano R; Coulouvrat F; Thomas JL
    J Acoust Soc Am; 2005 Feb; 117(2):566-77. PubMed ID: 15759678
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.