These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 12689356)

  • 1. Asphyxia and diuretic-induced changes in the Ca2+ concentration of endolymph.
    Takamaki A; Mori Y; Araki M; Mineharu A; Sohma Y; Tashiro J; Yoshida R; Takenaka H; Kubota T
    Jpn J Physiol; 2003 Feb; 53(1):35-44. PubMed ID: 12689356
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Endolymphatic perfusion with EGTA-acetoxymethyl ester inhibits asphyxia- and furosemide-induced decrease in endocochlear potential in guinea pigs.
    Mineharu A; Mori Y; Nimura Y; Takamaki A; Araki M; Yamaji J; Yoshida R; Takenaka H; Kubota T
    Jpn J Physiol; 2005 Feb; 55(1):53-60. PubMed ID: 15796789
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of CO2/HCO3- in perilymph on the endocochlear potential in guinea pigs.
    Nimura Y; Mori Y; Inui T; Sohma Y; Takenaka H; Kubota T
    J Physiol Sci; 2007 Feb; 57(1):15-22. PubMed ID: 17169167
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Ca2+ activity of cochlear endolymph of the guinea pig and the effect of inhibitors.
    Ikeda K; Kusakari J; Takasaka T; Saito Y
    Hear Res; 1987; 26(1):117-25. PubMed ID: 3644819
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Physiological role of L-type Ca2+ channels in marginal cells in the stria vascularis of guinea pigs.
    Inui T; Mori Y; Watanabe M; Takamaki A; Yamaji J; Sohma Y; Yoshida R; Takenaka H; Kubota T
    J Physiol Sci; 2007 Oct; 57(5):287-98. PubMed ID: 17963592
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ca(2+) regulation of endocochlear potential in marginal cells.
    Mori Y; Watanabe M; Inui T; Nimura Y; Araki M; Miyamoto M; Takenaka H; Kubota T
    J Physiol Sci; 2009 Sep; 59(5):355-65. PubMed ID: 19504169
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of high intensity impulse noise on ionic concentrations in cochlear endolymph of the guinea pig.
    Li W; Zhao L; Jiang S; Gu R
    Chin Med J (Engl); 1997 Nov; 110(11):883-6. PubMed ID: 9772424
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Effect of furosemide on the ampullar endolymphatic potential and endolymphatic Ca2+ activity].
    He D; Zhou W; Chen Z
    Lin Chuang Er Bi Yan Hou Ke Za Zhi; 1997 Sep; 11(9):392-5. PubMed ID: 10323004
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ionic changes in cochlear endolymph of the guinea pig induced by acoustic injury.
    Ikeda K; Kusakari J; Takasaka T
    Hear Res; 1988; 32(2-3):103-10. PubMed ID: 3129386
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Endolymph calcium increases with time after surgical induction of hydrops in guinea-pigs.
    Salt AN; DeMott J
    Hear Res; 1994 Apr; 74(1-2):115-21. PubMed ID: 8040082
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative differences in endolymphatic calcium and endocochlear potential between pigmented and albino guinea pigs.
    Gill SS; Salt AN
    Hear Res; 1997 Nov; 113(1-2):191-7. PubMed ID: 9387998
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Magnesium ion activity in the mammalian endolymph measured with ion-selective microelectrodes.
    Ikeda K; Morizono T; Kusakari J; Takasaka T
    Arch Otorhinolaryngol; 1988; 245(3):142-4. PubMed ID: 3178561
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of ATP-sensitive K+ channels in anoxia-sensitive negative potential of endolymph.
    Kitano I; Mori N; Matsunaga T
    Hear Res; 1995 Oct; 90(1-2):24-30. PubMed ID: 8975002
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Measurement of Ca2+ concentration and endocochlear potential in experimental endolymphatic hydrops in vivo].
    Zhang S; Zhou C; Zhao C
    Zhonghua Er Bi Yan Hou Ke Za Zhi; 1995; 30(5):276-8. PubMed ID: 8762506
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of vestibular labyrinth destruction on endocochlear potential and potassium concentration of the cochlea.
    Ikeda R; Nakaya K; Yamazaki M; Oshima T; Kawase T; Kobayashi T
    Hear Res; 2010 Jun; 265(1-2):90-5. PubMed ID: 20045046
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Calcium transport in the endolymphatic space of cochlea and vestibular organ.
    Ninoyu O; Meyer zum Gottesberge AM
    Acta Otolaryngol; 1986; 102(3-4):222-7. PubMed ID: 3490734
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Measurements of ionic concentrations along with endocochlear potential in wild-type and claudin 14 knockout mice.
    Shiraiwa Y; Daikoku E; Saito M; Yamashita Y; Abe T; Ono F; Kubota T
    Auris Nasus Larynx; 2018 Jun; 45(3):421-426. PubMed ID: 28811056
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Potassium ion conductance of the cochlear partition: differences between the chinchilla and guinea pig.
    Ikeda K; Morizono T
    Hear Res; 1988 Jul; 34(2):193-6. PubMed ID: 3170361
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ototoxic effect of potassium canrenoate on the guinea pig cochlea.
    Komune S; Wakizono S; Nakagawa T; Kimituki T; Hisashi K; Uemura T
    Acta Otolaryngol; 1991; 111(4):719-27. PubMed ID: 1950534
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reduction of the endocochlear potential by the new "loop" diuretic, bumetanide.
    Kusakari J; Kambayashi J; Ise I; Kawamoto K
    Acta Otolaryngol; 1978; 86(5-6):336-41. PubMed ID: 716856
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.