These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Electron transport system activity in soil, sediment, and pure cultures. Trevors JT Crit Rev Microbiol; 1984; 11(2):83-100. PubMed ID: 6375976 [TBL] [Abstract][Full Text] [Related]
3. The Chemical Transformation of the Cellular Toxin INT (2-(4-Iodophenyl)-3-(4-Nitrophenyl)-5-(Phenyl) Tetrazolium Chloride) as an Indicator of Prior Respiratory Activity in Aquatic Bacteria. Villegas-Mendoza J; Cajal-Medrano R; Maske H Int J Mol Sci; 2019 Feb; 20(3):. PubMed ID: 30759783 [TBL] [Abstract][Full Text] [Related]
4. Micromolar colorimetric detection of 2-hydroxy ketones with the water-soluble tetrazolium WST-1. Bommer M; Ward JM Anal Biochem; 2016 Jan; 493():8-10. PubMed ID: 26408350 [TBL] [Abstract][Full Text] [Related]
5. Physical and chemical factors affecting microbial biomass and activity in contaminated subsurface riverine sediments. Mosher JJ; Findlay RH; Johnston CG Can J Microbiol; 2006 May; 52(5):397-403. PubMed ID: 16699563 [TBL] [Abstract][Full Text] [Related]
6. Detection of microbial growth on polycyclic aromatic hydrocarbons in microtiter plates by using the respiration indicator WST-1. Johnsen AR; Bendixen K; Karlson U Appl Environ Microbiol; 2002 Jun; 68(6):2683-9. PubMed ID: 12039720 [TBL] [Abstract][Full Text] [Related]
7. Application of WST-8 based colorimetric NAD(P)H detection for quantitative dehydrogenase assays. Chamchoy K; Pakotiprapha D; Pumirat P; Leartsakulpanich U; Boonyuen U BMC Biochem; 2019 Apr; 20(1):4. PubMed ID: 30961528 [TBL] [Abstract][Full Text] [Related]
8. An NADH-tetrazolium-coupled sensitive assay for malate dehydrogenase in mitochondria and crude tissue homogenates. Luo C; Wang X; Long J; Liu J J Biochem Biophys Methods; 2006 Aug; 68(2):101-11. PubMed ID: 16740313 [TBL] [Abstract][Full Text] [Related]
9. Colorimetric assay for substrates of NADP+-dependent dehydrogenases based on reduction of a tetrazolium dye to its soluble formazan. Debnam PM; Shearer G Anal Biochem; 1997 Aug; 250(2):253-5. PubMed ID: 9245447 [No Abstract] [Full Text] [Related]
10. Screening method for detection of hydrocarbon-oxidizing bacteria in oil-contaminated water and soil specimens. Olga P; Petar K; Jelena M; Srdjan R J Microbiol Methods; 2008 Aug; 74(2-3):110-3. PubMed ID: 18501451 [TBL] [Abstract][Full Text] [Related]
11. A new microbial assay for the toxicity detection of contaminated soils. Guerra R; Iacondini A; Abbondanzi F; Matteucci C; Bruzzi L Ann Chim; 2002 Sep; 92(9):847-54. PubMed ID: 12407907 [TBL] [Abstract][Full Text] [Related]
12. Applicability of tetrazolium salts for the measurement of respiratory activity and viability of groundwater bacteria. Hatzinger PB; Palmer P; Smith RL; Peñarrieta CT; Yoshinari T J Microbiol Methods; 2003 Jan; 52(1):47-58. PubMed ID: 12401226 [TBL] [Abstract][Full Text] [Related]
13. On the mechanism of the multistep reduction of tetrazolium salts with special reference to the involvement of tetrazolium radicals. Seidler E; van Noorden CJ Acta Histochem; 1994 Mar; 96(1):43-9. PubMed ID: 8030382 [TBL] [Abstract][Full Text] [Related]
14. Assay of succinate dehydrogenase activity by a colorimetric-continuous method using iodonitrotetrazolium chloride as electron acceptor. Munujos P; Coll-Cantí J; González-Sastre F; Gella FJ Anal Biochem; 1993 Aug; 212(2):506-9. PubMed ID: 8214593 [TBL] [Abstract][Full Text] [Related]
15. INT (2-(4-Iodophenyl)-3-(4-Nitrophenyl)-5-(Phenyl) Tetrazolium Chloride) Is Toxic to Prokaryote Cells Precluding Its Use with Whole Cells as a Proxy for In Vivo Respiration. Villegas-Mendoza J; Cajal-Medrano R; Maske H Microb Ecol; 2015 Nov; 70(4):1004-11. PubMed ID: 25991603 [TBL] [Abstract][Full Text] [Related]
16. Site of interaction of 2-p-nitrophenyl-3-p-iodophenyl-5-tetrazolium chloride in the succinate oxidase system. SCHATZ G Biochim Biophys Acta; 1962 Aug; 62():581-4. PubMed ID: 14498071 [No Abstract] [Full Text] [Related]
17. Using sediment microbial fuel cells (SMFCs) for bioremediation of polycyclic aromatic hydrocarbons (PAHs). Sherafatmand M; Ng HY Bioresour Technol; 2015 Nov; 195():122-30. PubMed ID: 26081161 [TBL] [Abstract][Full Text] [Related]
18. Effects of substrates and phosphate on INT (2-(4-iodophenyl)-3-(4-nitrophenyl)-5-phenyl tetrazolium chloride) and CTC (5-cyano-2,3-ditolyl tetrazolium chloride) reduction in Escherichia coli. Smith JJ; McFeters GA J Appl Bacteriol; 1996 Feb; 80(2):209-15. PubMed ID: 8642015 [TBL] [Abstract][Full Text] [Related]
19. Colorimetry of diaphorase in commercial preparations and clinical chemical reagents by use of tetrazolium salts. Gella FJ; Olivella MT; Pegueroles F; Gener J Clin Chem; 1981 Oct; 27(10):1686-9. PubMed ID: 6895191 [TBL] [Abstract][Full Text] [Related]
20. Influence of earthworm activity on microbial communities related with the degradation of persistent pollutants. Natal-da-Luz T; Lee I; Verweij RA; Morais PV; Van Velzen MJ; Sousa JP; Van Gestel CA Environ Toxicol Chem; 2012 Apr; 31(4):794-803. PubMed ID: 22213518 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]