These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 12689761)

  • 1. Contribution of convection, diffusion and migration to electrolyte transport through nanofiltration membranes.
    Szymczyk A; Labbez C; Fievet P; Vidonne A; Foissy A; Pagetti J
    Adv Colloid Interface Sci; 2003 Mar; 103(1):77-94. PubMed ID: 12689761
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Temperature and concentration effects on electrolyte transport across porous thin-film composite nanofiltration membranes: Pore transport mechanisms and energetics of permeation.
    Sharma RR; Chellam S
    J Colloid Interface Sci; 2006 Jun; 298(1):327-40. PubMed ID: 16448663
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Studies on electrochemical characterization and performance prediction of cellulose acetate and Zeocarb-225 composite membranes in aqueous NaCl solutions.
    Tiwari AK; Ahmad S
    J Colloid Interface Sci; 2006 Jun; 298(1):274-81. PubMed ID: 16499917
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Membrane potential in multi-ionic mixtures.
    Lanteri Y; Szymczyk A; Fievet P
    J Phys Chem B; 2009 Jul; 113(27):9197-204. PubMed ID: 19518100
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of the "DSPM" model on a titania membrane: measurements of charged and uncharged solute retention, electrokinetic charge, pore size, and water permeability.
    Labbez C; Fievet P; Thomas F; Szymczyk A; Vidonne A; Foissy A; Pagetti P
    J Colloid Interface Sci; 2003 Jun; 262(1):200-11. PubMed ID: 16256596
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of steric, electric, and dielectric effects on membrane potential.
    Lanteri Y; Szymczyk A; Fievet P
    Langmuir; 2008 Aug; 24(15):7955-62. PubMed ID: 18616229
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of ion transport in nanofiltration using phenomenological coefficients and structural characteristics.
    Bason S; Kaufman Y; Freger V
    J Phys Chem B; 2010 Mar; 114(10):3510-7. PubMed ID: 20170142
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrochemical characterization of an asymmetric nanofiltration membrane with NaCl and KCl solutions: influence of membrane asymmetry on transport parameters.
    Cañas A; Benavente J
    J Colloid Interface Sci; 2002 Feb; 246(2):328-34. PubMed ID: 16290419
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Membrane potential across anion-exchange membranes in acidic solution system.
    Kimura N; Matsumoto H; Konosu Y; Yamamoto R; Minagawa M; Tanioka A
    J Colloid Interface Sci; 2005 Jun; 286(1):288-93. PubMed ID: 15848430
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Application of the charge regulation model to transport of ions through hydrophilic membranes: one-dimensional transport model for narrow pores (nanofiltration).
    de Lint WB; Biesheuvel PM; Verweij H
    J Colloid Interface Sci; 2002 Jul; 251(1):131-42. PubMed ID: 16290711
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Diffusion of ions in unsaturated porous materials.
    Revil A; Jougnot D
    J Colloid Interface Sci; 2008 Mar; 319(1):226-35. PubMed ID: 18083179
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Solute transport model for trace organic neutral and charged compounds through nanofiltration and reverse osmosis membranes.
    Kim TU; Drewes JE; Scott Summers R; Amy GL
    Water Res; 2007 Sep; 41(17):3977-88. PubMed ID: 17631378
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Permeation characteristics of electrolytes and neutral solutes through titania nanofiltration membranes at high temperatures.
    Tsuru T; Ogawa K; Kanezashi M; Yoshioka T
    Langmuir; 2010 Jul; 26(13):10897-905. PubMed ID: 20405860
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electroviscous Effects in Ceramic Nanofiltration Membranes.
    Farsi A; Boffa V; Christensen ML
    Chemphyschem; 2015 Nov; 16(16):3397-407. PubMed ID: 26346603
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of temperature on the transport of water and neutral solutes across nanofiltration membranes.
    Ben Amar N; Saidani H; Deratani A; Palmeri J
    Langmuir; 2007 Mar; 23(6):2937-52. PubMed ID: 17305374
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Insulin transport across porous charged membranes: Effect of the electrostatic interaction.
    Zhang S; Matsumoto H; Saito K; Minagawa M; Tanioka A
    Biotechnol Prog; 2009; 25(5):1379-86. PubMed ID: 19585552
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of the steric, electric, and dielectric exclusion model on the basis of salt rejection rate and membrane potential measurements.
    Lanteri Y; Fievet P; Szymczyk A
    J Colloid Interface Sci; 2009 Mar; 331(1):148-55. PubMed ID: 19081573
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tangential streaming potential as a tool in modeling of ion transport through nanoporous membranes.
    Szymczyk A; Fatin-Rouge N; Fievet P
    J Colloid Interface Sci; 2007 May; 309(2):245-52. PubMed ID: 17321538
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of nanofiltration for the rejection of nickel ions from aqueous solutions and estimation of membrane transport parameters.
    Murthy ZV; Chaudhari LB
    J Hazard Mater; 2008 Dec; 160(1):70-7. PubMed ID: 18400379
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Solute rejection by porous thin film composite nanofiltration membranes at high feed water recoveries.
    Sharma RR; Chellam S
    J Colloid Interface Sci; 2008 Dec; 328(2):353-66. PubMed ID: 18930248
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.