BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

488 related articles for article (PubMed ID: 12690403)

  • 1. Molecular nanosprings in spider capture-silk threads.
    Becker N; Oroudjev E; Mutz S; Cleveland JP; Hansma PK; Hayashi CY; Makarov DE; Hansma HG
    Nat Mater; 2003 Apr; 2(4):278-83. PubMed ID: 12690403
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evidence from flagelliform silk cDNA for the structural basis of elasticity and modular nature of spider silks.
    Hayashi CY; Lewis RV
    J Mol Biol; 1998 Feb; 275(5):773-84. PubMed ID: 9480768
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Behavioural and biomaterial coevolution in spider orb webs.
    Sensenig A; Agnarsson I; Blackledge TA
    J Evol Biol; 2010 Sep; 23(9):1839-56. PubMed ID: 20629854
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spider flagelliform silk: lessons in protein design, gene structure, and molecular evolution.
    Hayashi CY; Lewis RV
    Bioessays; 2001 Aug; 23(8):750-6. PubMed ID: 11494324
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Segmented nanofibers of spider dragline silk: atomic force microscopy and single-molecule force spectroscopy.
    Oroudjev E; Soares J; Arcdiacono S; Thompson JB; Fossey SA; Hansma HG
    Proc Natl Acad Sci U S A; 2002 Apr; 99 Suppl 2(Suppl 2):6460-5. PubMed ID: 11959907
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spider capture silk: performance implications of variation in an exceptional biomaterial.
    Swanson BO; Blackledge TA; Hayashi CY
    J Exp Zool A Ecol Genet Physiol; 2007 Nov; 307(11):654-66. PubMed ID: 17853401
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The common house spider alters the material and mechanical properties of cobweb silk in response to different prey.
    Boutry C; Blackledge TA
    J Exp Zool A Ecol Genet Physiol; 2008 Nov; 309(9):542-52. PubMed ID: 18651614
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gumfooted lines in black widow cobwebs and the mechanical properties of spider capture silk.
    Blackledge TA; Summers AP; Hayashi CY
    Zoology (Jena); 2005; 108(1):41-6. PubMed ID: 16351953
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biomechanical variation of silk links spinning plasticity to spider web function.
    Boutry C; Blackledge TA
    Zoology (Jena); 2009; 112(6):451-60. PubMed ID: 19720511
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Brown widow (Latrodectus geometricus) major ampullate silk protein and its material properties.
    Motriuk-Smith D; Lewis RV
    Biomed Sci Instrum; 2004; 40():64-9. PubMed ID: 15133936
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quasistatic and continuous dynamic characterization of the mechanical properties of silk from the cobweb of the black widow spider Latrodectus hesperus.
    Blackledge TA; Swindeman JE; Hayashi CY
    J Exp Biol; 2005 May; 208(Pt 10):1937-49. PubMed ID: 15879074
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unraveling the mechanical properties of composite silk threads spun by cribellate orb-weaving spiders.
    Blackledge TA; Hayashi CY
    J Exp Biol; 2006 Aug; 209(Pt 16):3131-40. PubMed ID: 16888061
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adhesive recruitment by the viscous capture threads of araneoid orb-weaving spiders.
    Opell BD; Hendricks ML
    J Exp Biol; 2007 Feb; 210(Pt 4):553-60. PubMed ID: 17267640
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Extreme diversity, conservation, and convergence of spider silk fibroin sequences.
    Gatesy J; Hayashi C; Motriuk D; Woods J; Lewis R
    Science; 2001 Mar; 291(5513):2603-5. PubMed ID: 11283372
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of major ampullate silk cDNAs from two non-orb-weaving spiders.
    Tian M; Liu C; Lewis R
    Biomacromolecules; 2004; 5(3):657-60. PubMed ID: 15132643
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adhesive compatibility of cribellar and viscous prey capture threads and its implication for the evolution of orb-weaving spiders.
    Opell BD; Tran AM; Karinshak SE
    J Exp Zool A Ecol Genet Physiol; 2011 Jul; 315(6):376-84. PubMed ID: 21445988
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hierarchical chain model of spider capture silk elasticity.
    Zhou H; Zhang Y
    Phys Rev Lett; 2005 Jan; 94(2):028104. PubMed ID: 15698235
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Persistent stickiness of viscous capture threads produced by araneoid orb-weaving spiders.
    Opell BD; Schwend HS
    J Exp Zool A Ecol Genet Physiol; 2008 Jan; 309(1):11-6. PubMed ID: 18095325
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Secondary structures and conformational changes in flagelliform, cylindrical, major, and minor ampullate silk proteins. Temperature and concentration effects.
    Dicko C; Knight D; Kenney JM; Vollrath F
    Biomacromolecules; 2004; 5(6):2105-15. PubMed ID: 15530023
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Segmented nanofibrils of spiral silk in Uloborus walckenaerius spider.
    Huang Z; Liao X; Yin G; Kang Y; Yao Y
    J Phys Chem B; 2009 Apr; 113(15):5092-7. PubMed ID: 19317392
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.