BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

486 related articles for article (PubMed ID: 12690403)

  • 41. Giant wood spider Nephila pilipes alters silk protein in response to prey variation.
    Tso IM; Wu HC; Hwang IR
    J Exp Biol; 2005 Mar; 208(Pt 6):1053-61. PubMed ID: 15767307
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Molecular characterization and evolutionary study of spider tubuliform (eggcase) silk protein.
    Tian M; Lewis RV
    Biochemistry; 2005 Jun; 44(22):8006-12. PubMed ID: 15924419
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The scaling of safety factor in spider draglines.
    Ortlepp C; Gosline JM
    J Exp Biol; 2008 Sep; 211(Pt 17):2832-40. PubMed ID: 18723542
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Silk structure rather than tensile mechanics explains web performance in the moth-specialized spider, Cyrtarachne.
    Diaz C; Tanikawa A; Miyashita T; Dhinojwala A; Blackledge TA
    J Exp Zool A Ecol Integr Physiol; 2018 Jul; ():. PubMed ID: 29992763
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Probing the elastic nature of spider silk in pursuit of the next designer fiber.
    Brooks AE; Lewis RV
    Biomed Sci Instrum; 2004; 40():232-7. PubMed ID: 15133963
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Comparing the rheology of native spider and silkworm spinning dope.
    Holland C; Terry AE; Porter D; Vollrath F
    Nat Mater; 2006 Nov; 5(11):870-4. PubMed ID: 17057700
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Silk elasticity as a potential constraint on spider body size.
    Rodríguez-Gironés MA; Corcobado G; Moya-Laraño J
    J Theor Biol; 2010 Oct; 266(3):430-5. PubMed ID: 20600136
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Spidroin profiling of cribellate spiders provides insight into the evolution of spider prey capture strategies.
    Kono N; Nakamura H; Mori M; Tomita M; Arakawa K
    Sci Rep; 2020 Sep; 10(1):15721. PubMed ID: 32973264
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Stretching of supercontracted fibers: a link between spinning and the variability of spider silk.
    Guinea GV; Elices M; Pérez-Rigueiro J; Plaza GR
    J Exp Biol; 2005 Jan; 208(Pt 1):25-30. PubMed ID: 15601874
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Pressure-induced crystal memory effect of spider silk proteins.
    Peng H; Zhou S; Jiang J; Guo T; Zheng X; Yu X
    J Phys Chem B; 2009 Apr; 113(14):4636-41. PubMed ID: 19296623
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The effect of proline on the network structure of major ampullate silks as inferred from their mechanical and optical properties.
    Savage KN; Gosline JM
    J Exp Biol; 2008 Jun; 211(Pt 12):1937-47. PubMed ID: 18515724
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Spider minor ampullate silk proteins are constituents of prey wrapping silk in the cob weaver Latrodectus hesperus.
    La Mattina C; Reza R; Hu X; Falick AM; Vasanthavada K; McNary S; Yee R; Vierra CA
    Biochemistry; 2008 Apr; 47(16):4692-700. PubMed ID: 18376847
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The role of proline in the elastic mechanism of hydrated spider silks.
    Savage KN; Gosline JM
    J Exp Biol; 2008 Jun; 211(Pt 12):1948-57. PubMed ID: 18515725
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Analysis of the conserved N-terminal domains in major ampullate spider silk proteins.
    Motriuk-Smith D; Smith A; Hayashi CY; Lewis RV
    Biomacromolecules; 2005; 6(6):3152-9. PubMed ID: 16283740
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Early Cretaceous spider web with its prey.
    Peñalver E; Grimaldi DA; Delclòs X
    Science; 2006 Jun; 312(5781):1761. PubMed ID: 16794072
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Relationships between supercontraction and mechanical properties of spider silk.
    Liu Y; Shao Z; Vollrath F
    Nat Mater; 2005 Dec; 4(12):901-5. PubMed ID: 16299506
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Review structure of silk by raman spectromicroscopy: from the spinning glands to the fibers.
    Lefèvre T; Paquet-Mercier F; Rioux-Dubé JF; Pézolet M
    Biopolymers; 2012 Jun; 97(6):322-36. PubMed ID: 21882171
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The effects of capture spiral composition and orb-web orientation on prey interception.
    Opell BD; Bond JE; Warner DA
    Zoology (Jena); 2006; 109(4):339-45. PubMed ID: 16962752
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Spider silk inspired functional microthreads.
    Sahni V; Labhasetwar DV; Dhinojwala A
    Langmuir; 2012 Jan; 28(4):2206-10. PubMed ID: 22148841
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Hierarchical structures made of proteins. The complex architecture of spider webs and their constituent silk proteins.
    Heim M; Römer L; Scheibel T
    Chem Soc Rev; 2010 Jan; 39(1):156-64. PubMed ID: 20023846
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 25.