These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 12690472)

  • 1. Voltage-clamp-controlled current-clamp recordings from neurons: an electrophysiological technique enabling the detection of fast potential changes at preset holding potentials.
    Sutor B; Grimm C; Polder HR
    Pflugers Arch; 2003 Apr; 446(1):133-41. PubMed ID: 12690472
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determination and compensation of series resistances during whole-cell patch-clamp recordings using an active bridge circuit and the phase-sensitive technique.
    Riedemann T; Polder HR; Sutor B
    Pflugers Arch; 2016 Oct; 468(10):1725-40. PubMed ID: 27539299
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of active electrode compensation to perform continuous voltage-clamp recordings with sharp microelectrodes.
    Gómez-González JF; Destexhe A; Bal T
    J Neural Eng; 2014 Oct; 11(5):056028. PubMed ID: 25246226
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A comparative voltage and current-clamp analysis of feedback and feedforward synaptic transmission in the striatal microcircuit in vitro.
    Gustafson N; Gireesh-Dharmaraj E; Czubayko U; Blackwell KT; Plenz D
    J Neurophysiol; 2006 Feb; 95(2):737-52. PubMed ID: 16236782
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Voltage-clamp analysis of neurons within deep layers of the brain.
    Richter DW; Pierrefiche O; Lalley PM; Polder HR
    J Neurosci Methods; 1996 Aug; 67(2):121-3. PubMed ID: 8872877
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The interpretation of current-clamp recordings in the cell-attached patch-clamp configuration.
    Mason MJ; Simpson AK; Mahaut-Smith MP; Robinson HP
    Biophys J; 2005 Jan; 88(1):739-50. PubMed ID: 15516522
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Low frequency voltage clamp: recording of voltage transients at constant average command voltage.
    Peters F; Gennerich A; Czesnik D; Schild D
    J Neurosci Methods; 2000 Jun; 99(1-2):129-36. PubMed ID: 10936652
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-resolution intracellular recordings using a real-time computational model of the electrode.
    Brette R; Piwkowska Z; Monier C; Rudolph-Lilith M; Fournier J; Levy M; Frégnac Y; Bal T; Destexhe A
    Neuron; 2008 Aug; 59(3):379-91. PubMed ID: 18701064
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Electrophysiological characteristics of medium spiny neurons in neocortex-striatum-substantia nigra brain slices of rats].
    Xu Z; Kong Y; Dong WL; Zhang ZC; Cao BY
    Zhonghua Yi Xue Za Zhi; 2011 May; 91(17):1211-4. PubMed ID: 21756778
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A single electrode voltage, current- and patch-clamp amplifier with complete stable series resistance compensation.
    Strickholm A
    J Neurosci Methods; 1995; 61(1-2):53-66. PubMed ID: 8618426
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microchip amplifier for in vitro, in vivo, and automated whole cell patch-clamp recording.
    Harrison RR; Kolb I; Kodandaramaiah SB; Chubykin AA; Yang A; Bear MF; Boyden ES; Forest CR
    J Neurophysiol; 2015 Feb; 113(4):1275-82. PubMed ID: 25429119
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cell-attached voltage-clamp and current-clamp recording and stimulation techniques in brain slices.
    Perkins KL
    J Neurosci Methods; 2006 Jun; 154(1-2):1-18. PubMed ID: 16554092
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Space-clamp problems when voltage clamping neurons expressing voltage-gated conductances.
    Bar-Yehuda D; Korngreen A
    J Neurophysiol; 2008 Mar; 99(3):1127-36. PubMed ID: 18184885
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improved hybrid clamp: resolution of tail currents following single action potentials.
    Dietrich D; Clusmann H; Kral T
    J Neurosci Methods; 2002 Apr; 116(1):55-63. PubMed ID: 12007983
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional roles of Kv1 channels in neocortical pyramidal neurons.
    Guan D; Lee JC; Higgs MH; Spain WJ; Foehring RC
    J Neurophysiol; 2007 Mar; 97(3):1931-40. PubMed ID: 17215507
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrophysiology of sipatrigine: a lamotrigine derivative exhibiting neuroprotective effects.
    Calabresi P; Stefani A; Marfia GA; Hainsworth AH; Centonze D; Saulle E; Spadoni F; Leach MJ; Giacomini P; Bernardi G
    Exp Neurol; 2000 Mar; 162(1):171-9. PubMed ID: 10716897
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Voltage clamping with a single microelectrode.
    Wilson WA; Goldner MM
    J Neurobiol; 1975 Jul; 6(4):411-22. PubMed ID: 1181381
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accurate measurement of junctional conductance between electrically coupled cells with dual whole-cell voltage-clamp under conditions of high series resistance.
    Hartveit E; Veruki ML
    J Neurosci Methods; 2010 Mar; 187(1):13-25. PubMed ID: 20074587
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional and molecular development of striatal fast-spiking GABAergic interneurons and their cortical inputs.
    Plotkin JL; Wu N; Chesselet MF; Levine MS
    Eur J Neurosci; 2005 Sep; 22(5):1097-108. PubMed ID: 16176351
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biolistic delivery of voltage-sensitive dyes for fast recording of membrane potential changes in individual neurons in rat brain slices.
    Aseyev N; Roshchin M; Ierusalimsky VN; Balaban PM; Nikitin ES
    J Neurosci Methods; 2013 Jan; 212(1):17-27. PubMed ID: 22983172
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.