BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 12691531)

  • 1. Comparison of the suppressive effects of antisense oligonucleotides and siRNAs directed against the same targets in mammalian cells.
    Miyagishi M; Hayashi M; Taira K
    Antisense Nucleic Acid Drug Dev; 2003 Feb; 13(1):1-7. PubMed ID: 12691531
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicting the efficacy of short oligonucleotides in antisense and RNAi experiments with boosted genetic programming.
    Saetrom P
    Bioinformatics; 2004 Nov; 20(17):3055-63. PubMed ID: 15201190
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Antisense inhibition: oligonucleotides, ribozymes, and siRNAs.
    Zhang YC; Taylor MM; Samson WK; Phillips MI
    Methods Mol Med; 2005; 106():11-34. PubMed ID: 15375310
    [No Abstract]   [Full Text] [Related]  

  • 4. Functional comparison of single- and double-stranded siRNAs in mammalian cells.
    Xu Y; Linde A; Larsson O; Thormeyer D; Elmen J; Wahlestedt C; Liang Z
    Biochem Biophys Res Commun; 2004 Apr; 316(3):680-7. PubMed ID: 15033453
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stimulatory effect of an indirectly attached RNA helicase-recruiting sequence on the suppression of gene expression by antisense oligonucleotides.
    Futami T; Miyagishi M; Iwai S; Seki M; Taira K
    Antisense Nucleic Acid Drug Dev; 2003 Feb; 13(1):9-17. PubMed ID: 12691532
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sequence, chemical, and structural variation of small interfering RNAs and short hairpin RNAs and the effect on mammalian gene silencing.
    Harborth J; Elbashir SM; Vandenburgh K; Manninga H; Scaringe SA; Weber K; Tuschl T
    Antisense Nucleic Acid Drug Dev; 2003 Apr; 13(2):83-105. PubMed ID: 12804036
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-throughput screening of effective siRNAs from RNAi libraries delivered via bacterial invasion.
    Zhao HF; L'Abbé D; Jolicoeur N; Wu M; Li Z; Yu Z; Shen SH
    Nat Methods; 2005 Dec; 2(12):967-73. PubMed ID: 16299483
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Expressing functional siRNAs in mammalian cells using convergent transcription.
    Tran N; Cairns MJ; Dawes IW; Arndt GM
    BMC Biotechnol; 2003 Nov; 3():21. PubMed ID: 14604435
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Expression of siRNA from a single transcript that includes multiple ribozymes in mammalian cells.
    Kato Y; Taira K
    Oligonucleotides; 2003; 13(5):335-43. PubMed ID: 15000824
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Approaches for the sequence-specific knockdown of mRNA.
    Scherer LJ; Rossi JJ
    Nat Biotechnol; 2003 Dec; 21(12):1457-65. PubMed ID: 14647331
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nucleic acid-based techniques for post-transcriptional regulation of molecular targets.
    Jarad G; Simske JS; Sedor JR; Schelling JR
    Curr Opin Nephrol Hypertens; 2003 Jul; 12(4):415-21. PubMed ID: 12815338
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Antisense-mediated inhibition of survivin, hTERT and VEGF in bladder cancer cells in vitro and in vivo.
    Kunze D; Wuttig D; Kausch I; Blietz C; Blumhoff L; Burmeister Y; Kraemer K; Fuessel S; Toma M; Schwenzer B; Meye A; Grimm MO; Hakenberg OW; Jocham D; Wirth MP
    Int J Oncol; 2008 May; 32(5):1049-56. PubMed ID: 18425331
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-content imaging analysis of the knockdown effects of validated siRNAs and antisense oligonucleotides.
    Low J; Shuguang Huang ; Dowless M; Blosser W; Vincent T; Davis S; Hodson J; Koller E; Marcusson E; Blanchard K; Stancato L
    J Biomol Screen; 2007 Sep; 12(6):775-88. PubMed ID: 17517903
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Detection of RNA interference in nasopharyngeal carcinoma cell lines using reporter genes].
    Yin ZH; Ren CP; Li F; Jiang WH; Yang XY; Feng XL; Yao KT
    Ai Zheng; 2005 Mar; 24(3):371-5. PubMed ID: 15757546
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Future promise of siRNA and other nucleic acid based therapeutics for the treatment of chronic HCV.
    Wilson JA; Richardson CD
    Infect Disord Drug Targets; 2006 Mar; 6(1):43-56. PubMed ID: 16787303
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Antisense inhibitors, ribozymes, and siRNAs.
    Thompson AJ; Patel K
    Clin Liver Dis; 2009 Aug; 13(3):375-90. PubMed ID: 19628155
    [TBL] [Abstract][Full Text] [Related]  

  • 17. U6 promoter-driven siRNAs with four uridine 3' overhangs efficiently suppress targeted gene expression in mammalian cells.
    Miyagishi M; Taira K
    Nat Biotechnol; 2002 May; 20(5):497-500. PubMed ID: 11981564
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Central administration of small interfering RNAs in rats: a comparison with antisense oligonucleotides.
    Senn C; Hangartner C; Moes S; Guerini D; Hofbauer KG
    Eur J Pharmacol; 2005 Oct; 522(1-3):30-7. PubMed ID: 16213482
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SiRNAs conjugated with aromatic compounds induce RISC-mediated antisense strand selection and strong gene-silencing activity.
    Kubo T; Yanagihara K; Takei Y; Mihara K; Sato Y; Seyama T
    Biochem Biophys Res Commun; 2012 Oct; 426(4):571-7. PubMed ID: 22982308
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects on RNA interference in gene expression (RNAi) in cultured mammalian cells of mismatches and the introduction of chemical modifications at the 3'-ends of siRNAs.
    Hamada M; Ohtsuka T; Kawaida R; Koizumi M; Morita K; Furukawa H; Imanishi T; Miyagishi M; Taira K
    Antisense Nucleic Acid Drug Dev; 2002 Oct; 12(5):301-9. PubMed ID: 12477280
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.